KNN算法python实战
时间: 2023-08-18 19:08:46 浏览: 120
当涉及到实现KNN算法的Python实战时,你可以按照以下步骤进行:
1. 导入必要的库:
```python
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
```
2. 准备数据集:
```python
# 假设有特征数据X和对应的标签数据y
X = ...
y = ...
```
3. 划分训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
4. 创建KNN分类器对象:
```python
k = 3 # 设置K值
knn = KNeighborsClassifier(n_neighbors=k)
```
5. 拟合训练集:
```python
knn.fit(X_train, y_train)
```
6. 进行预测:
```python
y_pred = knn.predict(X_test)
```
7. 计算准确率:
```python
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)
```
这是一个简单的KNN算法的Python实现示例。你需要根据你的具体数据和需求进行适当的修改。另外,还可以使用其他特征工程方法、调整K值等来进一步提高算法的性能。
阅读全文