给出yolov11视频推理的python代码
时间: 2024-10-19 11:01:11 浏览: 84
YOLOv11是You Only Look Once (YOLO)系列的最新版本,用于目标检测任务。在Python中进行YOLOv11视频推理,通常会用到TensorFlow、PyTorch等深度学习框架以及它们的API。以下是一个简单的例子,展示如何使用Detectron2库(基于PyTorch)进行YOLov11的视频推理:
```python
# 首先,安装必要的库
!pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.8/index.html
!pip install torchvision
import torch
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog
# 加载配置文件,这通常包含预训练模型的信息
cfg = get_cfg()
cfg.merge_from_file("path_to_yolov11_config.yaml") # 替换为实际的YOLov11配置文件路径
cfg.MODEL.WEIGHTS = "path_to_yolov11_weights.pth" # 替换为实际的预训练权重路径
MetadataCatalog.get(cfg.DATASETS.TRAIN[0]).set(thing_classes=["your_class_list"]) # 根据需要设置类别列表
# 初始化预测器
predictor = DefaultPredictor(cfg)
# 视频读取函数
def infer_video(video_path):
video = cv2.VideoCapture(video_path)
while True:
ret, frame = video.read()
if not ret:
break
outputs = predictor(frame) # 进行推理
detections = outputs["instances"].to("cpu")
visualize_frame(frame, detections) # 可视化帧并显示结果
cv2.imshow("YOLOv11 Detection", frame)
if cv2.waitKey(1) == ord('q'):
break
# 自定义可视化函数
def visualize_frame(frame, detections):
for detection in detections:
bbox = detection.pred_boxes.tensor.numpy() # 获取边界框坐标
score = detection.scores.item() # 获取置信度分数
class_name = detection.pred_classes.tolist()[0] # 获取类别名
frame = draw_bbox(frame, bbox, score, class_name)
return frame
infer_video("path_to_your_video.mp4") # 替换为你要处理的视频路径
阅读全文