python 写yolov5的推理代码

时间: 2023-08-31 17:34:33 浏览: 133
### 回答1: 要使用Python编写YoloV5的推理代码,您需要执行以下步骤: 1. 安装yolov5库: 您可以使用以下命令安装yolov5库: ``` !pip install yolov5 ``` 2. 加载模型: 使用以下代码加载训练好的模型: ``` import torch model = torch.hub.load('ultralytics/yolov5', 'custom', path_or_model='path/to/best.pt') ``` 这将加载模型并将其存储在变量“model”中。请注意,您需要将“path/to/best.pt”替换为实际模型文件的路径。 3. 加载图像: 使用以下代码加载要进行目标检测的图像: ``` import cv2 image = cv2.imread('path/to/image.jpg') ``` 这将加载图像并将其存储在变量“image”中。请注意,您需要将“path/to/image.jpg”替换为实际图像文件的路径。 4. 进行推理: 使用以下代码对加载的图像进行目标检测: ``` results = model(image) ``` 这将对图像进行推理,并将检测结果存储在变量“results”中。 5. 处理检测结果: 您可以使用以下代码处理检测结果: ``` results.print() ``` 这将打印检测结果。您还可以使用以下代码将检测结果可视化: ``` results.show() ``` 这将显示检测结果的可视化版本。 请注意,这只是一个基本的YoloV5推理示例。您可以根据需要进行更改和自定义。 ### 回答2: Yolov5 是一个基于 Python 的目标检测算法模型,下面是一个简单的推理代码的示例: ```python import torch from torch.backends import cudnn import numpy as np from PIL import Image from matplotlib import pyplot as plt from torchvision.transforms import functional as F # 加载模型 model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # 设置模型为推理模式 model.eval() # 加载图像 image = Image.open('image.jpg') # 读取图像 image_tensor = F.to_tensor(image).unsqueeze(0) # 转为张量并添加batch维度 # 执行推理 with torch.no_grad(): # 将图像输入模型进行推理 result = model(image_tensor) # 解析推理结果 pred_boxes = result.pred[0].detach().cpu().numpy()[:, :4] # 预测框的坐标 pred_scores = result.pred[0].detach().cpu().numpy()[:, 4] # 预测框的置信度 # 可视化结果 plt.imshow(image) for (x1, y1, x2, y2), score in zip(pred_boxes, pre_scores): plt.rectangle((x1, y1), (x2, y2), color='r', linewidth=2) plt.text(x1, y1, f'{score:.2f}', color='r') # 显示图像 plt.show() ``` 这段代码首先通过 `torch.hub.load` 加载 Yolov5 模型,接着将图像读取并转换为张量,然后将图像输入模型,执行推理。推理结果包含预测框的坐标和置信度。最后,代码使用 Matplotlib 进行可视化,将预测框和置信度绘制在原图上,并显示图像。 这只是一个简单的示例,真正的推理代码可能会根据具体的需求和模型的复杂性而有所不同。但是,这段代码可以作为一个基础的参考来帮助你编写 Yolov5 的推理代码。 ### 回答3: 要编写Yolov5的推理代码,首先需要安装Yolov5的库和依赖项。可以通过在终端中运行以下命令来安装Yolov5: ```python !pip install -r requirements.txt ``` 接下来,创建一个Python文件,并导入所需的库: ```python import torch import numpy as np from PIL import Image from torchvision.transforms import functional as F from models.experimental import attempt_load ``` 然后,加载训练好的模型: ```python model = attempt_load('yolov5s.pt', map_location=torch.device('cpu')) ``` 接下来,处理输入图像和预测: ```python def predict(image_path): # 加载图像 image = Image.open(image_path) # 图像预处理 image = F.pad(image, (0, 0, image.width % 32, image.height % 32), fill=0) image = F.resize(image, (640, 640)).convert('RGB') image_tensor = F.to_tensor(image) image_tensor = image_tensor.unsqueeze(0) # 进行预测 model.eval() with torch.no_grad(): detections = model(image_tensor)[0] detections = non_max_suppression(detections, conf_thres=0.3, iou_thres=0.5) # 处理预测结果 if detections is not None: for detection in detections: detection = detection.numpy() bounding_box = detection[:4] confidence = detection[4] class_id = detection[5] # 打印检测结果 print("Bounding Box:", bounding_box) print("Confidence:", confidence) print("Class ID:", class_id) else: print("No objects detected.") ``` 最后,调用`predict`函数并传入图像路径来进行预测: ```python predict('image.jpg') ``` 以上就是使用Python编写Yolov5的推理代码的步骤。请注意,这只是一个简单的示例,你可能需要根据你的需求进行适当的修改和调整。
阅读全文

相关推荐

zip
【资源说明】 基于tensorrt int8量化yolov5 onnx模型并实现推理python源码(加速推理)+操作说明.zip 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7.2.16 OpenCV:3.4.2 cuda,cudnn,tensorrt和OpenCV安装包(编译好了,也可以自己从官网下载编译)可以从链接: https://pan.baidu.com/s/1dpMRyzLivnBAca2c_DIgGw 密码: 0rct cuda安装 如果系统有安装驱动,运行如下命令卸载 sudo apt-get purge nvidia* 禁用nouveau,运行如下命令 sudo vim /etc/modprobe.d/blacklist.conf 在末尾添加 blacklist nouveau 然后执行 sudo update-initramfs -u chmod +x cuda_11.0.2_450.51.05_linux.run sudo ./cuda_11.0.2_450.51.05_linux.run 是否接受协议: accept 然后选择Install 最后回车 vim ~/.bashrc 添加如下内容: export PATH=/usr/local/cuda-11.0/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:$LD_LIBRARY_PATH source .bashrc 激活环境 cudnn 安装 tar -xzvf cudnn-11.0-linux-x64-v8.0.4.30.tgz cd cuda/include sudo cp *.h /usr/local/cuda-11.0/include cd cuda/lib64 sudo cp libcudnn* /usr/local/cuda-11.0/lib64 tensorrt及OpenCV安装 定位到用户根目录 tar -xzvf TensorRT-7.2.1.6.Ubuntu-18.04.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz cd TensorRT-7.2.1.6/python,该目录有4个python版本的tensorrt安装包 sudo pip3 install tensorrt-7.2.1.6-cp37-none-linux_x86_64.whl(根据自己的python版本安装) pip install pycuda 安装python版本的cuda 定位到用户根目录 tar -xzvf opencv-3.4.2.zip 以备推理调用 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!

最新推荐

recommend-type

我的Yolov5学习一个全过程

本篇文章将全面解析YOLOv5的学习过程,包括源码下载、环境配置、数据集准备、模型训练和推理。 首先,要开始学习YOLOv5,你需要从其官方GitHub仓库(https://github.com/ultralytics/YOLOv5)下载源代码。下载完成后...
recommend-type

YOLOv5_DOTA_OBB-master-Windows运行环境配置.pdf

YOLOv5_DOTA_OBB-master 是一个基于YOLOv5的项目,用于检测DOTA(Digital Operational Task Annotation)数据集中的对象,该数据集包含大量航空影像中的地物类别。在Windows环境下运行此项目,首先需要配置合适的...
recommend-type

《COMSOL顺层钻孔瓦斯抽采实践案例分析与技术探讨》,COMSOL模拟技术在顺层钻孔瓦斯抽采案例中的应用研究与实践,comsol顺层钻孔瓦斯抽采案例 ,comsol;顺层钻孔;瓦斯抽采;案例,COM

《COMSOL顺层钻孔瓦斯抽采实践案例分析与技术探讨》,COMSOL模拟技术在顺层钻孔瓦斯抽采案例中的应用研究与实践,comsol顺层钻孔瓦斯抽采案例 ,comsol;顺层钻孔;瓦斯抽采;案例,COMSOL顺层钻孔瓦斯抽采成功案例分析
recommend-type

MATLAB驱动的高尔夫模拟仿真系统:深度定制球杆与挥杆参数的互动体验,基于MATLAB的全方位高尔夫模拟仿真系统:精确设定球杆与天气因素,让用户享受个性化的挥杆力量与角度掌控体验,基于MATLAB的

MATLAB驱动的高尔夫模拟仿真系统:深度定制球杆与挥杆参数的互动体验,基于MATLAB的全方位高尔夫模拟仿真系统:精确设定球杆与天气因素,让用户享受个性化的挥杆力量与角度掌控体验,基于MATLAB的高尔夫模拟仿真系统。 允许用户选择球杆、设置风速和方向,以及设置挥杆力量和角度。 ,基于MATLAB; 高尔夫模拟仿真系统; 用户选择球杆; 设置风速和方向; 设置挥杆力量和角度,MATLAB高尔夫球杆仿真系统
recommend-type

PHP集成Autoprefixer让CSS自动添加供应商前缀

标题和描述中提到的知识点主要包括:Autoprefixer、CSS预处理器、Node.js 应用程序、PHP 集成以及开源。 首先,让我们来详细解析 Autoprefixer。 Autoprefixer 是一个流行的 CSS 预处理器工具,它能够自动将 CSS3 属性添加浏览器特定的前缀。开发者在编写样式表时,不再需要手动添加如 -webkit-, -moz-, -ms- 等前缀,因为 Autoprefixer 能够根据各种浏览器的使用情况以及官方的浏览器版本兼容性数据来添加相应的前缀。这样可以大大减少开发和维护的工作量,并保证样式在不同浏览器中的一致性。 Autoprefixer 的核心功能是读取 CSS 并分析 CSS 规则,找到需要添加前缀的属性。它依赖于浏览器的兼容性数据,这一数据通常来源于 Can I Use 网站。开发者可以通过配置文件来指定哪些浏览器版本需要支持,Autoprefixer 就会自动添加这些浏览器的前缀。 接下来,我们看看 PHP 与 Node.js 应用程序的集成。 Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行时环境,它使得 JavaScript 可以在服务器端运行。Node.js 的主要特点是高性能、异步事件驱动的架构,这使得它非常适合处理高并发的网络应用,比如实时通讯应用和 Web 应用。 而 PHP 是一种广泛用于服务器端编程的脚本语言,它的优势在于简单易学,且与 HTML 集成度高,非常适合快速开发动态网站和网页应用。 在一些项目中,开发者可能会根据需求,希望把 Node.js 和 PHP 集成在一起使用。比如,可能使用 Node.js 处理某些实时或者异步任务,同时又依赖 PHP 来处理后端的业务逻辑。要实现这种集成,通常需要借助一些工具或者中间件来桥接两者之间的通信。 在这个标题中提到的 "autoprefixer-php",可能是一个 PHP 库或工具,它的作用是把 Autoprefixer 功能集成到 PHP 环境中,从而使得在使用 PHP 开发的 Node.js 应用程序时,能够利用 Autoprefixer 自动处理 CSS 前缀的功能。 关于开源,它指的是一个项目或软件的源代码是开放的,允许任何个人或组织查看、修改和分发原始代码。开源项目的好处在于社区可以一起参与项目的改进和维护,这样可以加速创新和解决问题的速度,也有助于提高软件的可靠性和安全性。开源项目通常遵循特定的开源许可证,比如 MIT 许可证、GNU 通用公共许可证等。 最后,我们看到提到的文件名称 "autoprefixer-php-master"。这个文件名表明,该压缩包可能包含一个 PHP 项目或库的主分支的源代码。"master" 通常是源代码管理系统(如 Git)中默认的主要分支名称,它代表项目的稳定版本或开发的主线。 综上所述,我们可以得知,这个 "autoprefixer-php" 工具允许开发者在 PHP 环境中使用 Node.js 的 Autoprefixer 功能,自动为 CSS 规则添加浏览器特定的前缀,从而使得开发者可以更专注于内容的编写而不必担心浏览器兼容性问题。
recommend-type

揭秘数字音频编码的奥秘:非均匀量化A律13折线的全面解析

# 摘要 数字音频编码技术是现代音频处理和传输的基础,本文首先介绍数字音频编码的基础知识,然后深入探讨非均匀量化技术,特别是A律压缩技术的原理与实现。通过A律13折线模型的理论分析和实际应用,本文阐述了其在保证音频信号质量的同时,如何有效地降低数据传输和存储需求。此外,本文还对A律13折线的优化策略和未来发展趋势进行了展望,包括误差控制、算法健壮性的提升,以及与新兴音频技术融合的可能性。 # 关键字 数字音频编码;非均匀量化;A律压缩;13折线模型;编码与解码;音频信号质量优化 参考资源链接:[模拟信号数字化:A律13折线非均匀量化解析](https://wenku.csdn.net/do
recommend-type

arduino PAJ7620U2

### Arduino PAJ7620U2 手势传感器 教程 #### 示例代码与连接方法 对于Arduino开发PAJ7620U2手势识别传感器而言,在Arduino IDE中的项目—加载库—库管理里找到Paj7620并下载安装,完成后能在示例里找到“Gesture PAJ7620”,其中含有两个示例脚本分别用于9种和15种手势检测[^1]。 关于连线部分,仅需连接四根线至Arduino UNO开发板上的对应位置即可实现基本功能。具体来说,这四条线路分别为电源正极(VCC),接地(GND),串行时钟(SCL)以及串行数据(SDA)[^1]。 以下是基于上述描述的一个简单实例程序展示如
recommend-type

网站啄木鸟:深入分析SQL注入工具的效率与限制

网站啄木鸟是一个指的是一类可以自动扫描网站漏洞的软件工具。在这个文件提供的描述中,提到了网站啄木鸟在发现注入漏洞方面的功能,特别是在SQL注入方面。SQL注入是一种常见的攻击技术,攻击者通过在Web表单输入或直接在URL中输入恶意的SQL语句,来欺骗服务器执行非法的SQL命令。其主要目的是绕过认证,获取未授权的数据库访问权限,或者操纵数据库中的数据。 在这个文件中,所描述的网站啄木鸟工具在进行SQL注入攻击时,构造的攻击载荷是十分基础的,例如 "and 1=1--" 和 "and 1>1--" 等。这说明它的攻击能力可能相对有限。"and 1=1--" 是一个典型的SQL注入载荷示例,通过在查询语句的末尾添加这个表达式,如果服务器没有对SQL注入攻击进行适当的防护,这个表达式将导致查询返回真值,从而使得原本条件为假的查询条件变为真,攻击者便可以绕过安全检查。类似地,"and 1>1--" 则会检查其后的语句是否为假,如果查询条件为假,则后面的SQL代码执行时会被忽略,从而达到注入的目的。 描述中还提到网站啄木鸟在发现漏洞后,利用查询MS-sql和Oracle的user table来获取用户表名的能力不强。这表明该工具可能无法有效地探测数据库的结构信息或敏感数据,从而对数据库进行进一步的攻击。 关于实际测试结果的描述中,列出了8个不同的URL,它们是针对几个不同的Web应用漏洞扫描工具(Sqlmap、网站啄木鸟、SqliX)进行测试的结果。这些结果表明,针对提供的URL,Sqlmap和SqliX能够发现注入漏洞,而网站啄木鸟在多数情况下无法识别漏洞,这可能意味着它在漏洞检测的准确性和深度上不如其他工具。例如,Sqlmap在针对 "http://www.2cto.com/news.php?id=92" 和 "http://www.2cto.com/article.asp?ID=102&title=Fast food marketing for children is on the rise" 的URL上均能发现SQL注入漏洞,而网站啄木鸟则没有成功。这可能意味着网站啄木鸟的检测逻辑较为简单,对复杂或隐蔽的注入漏洞识别能力不足。 从这个描述中,我们也可以了解到,在Web安全测试中,工具的多样性选择是十分重要的。不同的安全工具可能对不同的漏洞和环境有不同的探测能力,因此在实际的漏洞扫描过程中,安全测试人员需要选择合适的工具组合,以尽可能地全面地检测出应用中存在的漏洞。 在标签中指明了这是关于“sql注入”的知识,这表明了文件主题的核心所在。SQL注入是一种常见的网络攻击方式,安全测试人员、开发人员和网络管理员都需要对此有所了解,以便进行有效的防御和检测。 最后,提到了压缩包子文件的文件名称列表,其中包含了三个文件:setup.exe、MD5.exe、说明_Readme.html。这里提供的信息有限,但可以推断setup.exe可能是一个安装程序,MD5.exe可能是一个计算文件MD5散列值的工具,而说明_Readme.html通常包含的是软件的使用说明或者版本信息等。这些文件名暗示了在进行网站安全测试时,可能涉及到安装相关的软件工具,以及进行文件的校验和阅读相应的使用说明。然而,这些内容与文件主要描述的web安全漏洞检测主题不是直接相关的。
recommend-type

【GPStoolbox使用技巧大全】:20个实用技巧助你精通GPS数据处理

# 摘要 GPStoolbox是一个广泛应用于GPS数据处理的软件工具箱,它提供了从数据导入、预处理、基本分析到高级应用和自动化脚本编写的全套功能。本文介绍了GPStoolbox的基本概况、安装流程以及核心功能,探讨了如何
recommend-type

spring boot怎么配置maven

### 如何在 Spring Boot 项目中正确配置 Maven #### pom.xml 文件设置 `pom.xml` 是 Maven 项目的核心配置文件,在 Spring Boot 中尤为重要,因为其不仅管理着所有的依赖关系还控制着项目的构建流程。对于 `pom.xml` 的基本结构而言,通常包含如下几个部分: - **Project Information**: 定义了关于项目的元数据,比如模型版本、组ID、工件ID和版本号等基本信息[^1]。 ```xml <project xmlns="http://maven.apache.org/POM/4.0.0