python实现yolov8的推理代码
时间: 2024-12-25 11:13:22 浏览: 10
基于yolov8的基建裂缝目标检测系 统Python源码+文档说明+推理集+数据集.zip 太多600多m 存百度云盘
在Python中实现YOLOv8的推理通常需要几个步骤,包括安装必要的库、加载预训练模型和处理输入图像。以下是简化的示例代码片段,使用`pytorch-yolo-vision`库:
```python
# 首先,你需要安装必要的库
!pip install torch torchvision pyyaml cython opencv-python-headless -f https://data.pytorch.org/whl/torch_stable.html
import torch
from PIL import Image
from models.common import Detect
from utils.utils import non_max_suppression
# 加载预训练模型
model = Detect(model_path='path/to/yolov8.weights', config_path='path/to/yolov8.cfg')
# 定义推理函数
def yolov8_inference(image_path):
# 加载图像
image = Image.open(image_path).convert('RGB')
# 将图像转换为张量并调整尺寸
image_tensor = torch.from_numpy(image.resize((640, 640)).transpose(2, 0, 1).astype('float32') / 255)
image_tensor = image_tensor.unsqueeze(0)
# 进行前向传播
with torch.no_grad():
outputs = model(image_tensor)
# 获取预测结果并进行非极大抑制(NMS)处理
boxes, confidences, classes = outputs
boxes = boxes[0]
confidences = confidences[0]
detections = non_max_suppression(boxes, confidences, 0.5, 0.4) # 可能需要调整阈值
return detections
# 使用模型对图像进行推理
image_detections = yolov8_inference('path/to/input_image.jpg')
# 输出检测到的对象及其信息
for detection in image_detections:
print(f"bbox: {detection[0]}, confidence: {detection[1]}, class: {detection[2]}")
阅读全文