jupyter 蚁群算法代码
时间: 2024-10-12 16:01:18 浏览: 31
蚁群算法AC ACS ACO
Jupyter Notebook是一个交互式的笔记本环境,常用于数据科学、机器学习等领域,它支持Python和其他多种编程语言。蚂蚁群优化(Ant Colony Optimization, ACO)是一种模拟蚁群行为的搜索算法,通常用于解决组合优化问题。
在Jupyter中编写蚂蚁群算法代码,首先需要导入必要的库,如`networkx`(图论库)、`deap`(遗传算法库)以及自定义的蚂蚁操作函数等。以下是一个简单的例子:
```python
import numpy as np
import networkx as nx
from deap import base, creator, tools
# 创建蚂蚁类
class Ant:
def __init__(self, graph, pheromone):
self.position = None
self.pheromone_trail = pheromone.copy()
# 爬行选择下一个节点
def move(self, alpha, beta):
choices = [(n, self.pheromone_trail[n] ** alpha) for n in self.graph.neighbors(self.position)]
total = sum(choice[1] for choice in choices)
r = np.random.rand()
cumsum = 0
next_node = None
for node, prob in choices:
cumsum += prob
if r < cumsum / total:
next_node = node
break
return next_node
# 定义蚁群算法核心部分
def ant_colony_optimization(graph, iterations, alpha, beta):
pheromone = np.ones(len(graph.nodes))
population_size = 50
ants = [Ant(graph, pheromone.copy()) for _ in range(population_size)]
# 主循环
for _ in range(iterations):
for ant in ants:
ant.move(alpha, beta)
graph[ant.position][next_node] += 1 # 更新pheromone trail
best_ant = max(ants, key=lambda a: a.pheromone_trail[a.position])
# 信息素更新(退火)
evaporation_rate = 0.9 # 信息素挥发率
pheromone *= (1 - evaporation_rate)
pheromone[best_ant.position] += 1 / len(ants) # 最佳路径加权增强
# 示例使用
graph = nx.grid_2d_graph(10, 10)
ant_colony_optimization(graph, 100, 1, 2) # 参数调整以适应问题规模
阅读全文