Relue Gelu softmax sigmoid
时间: 2024-06-04 19:05:47 浏览: 276
Relu、Gelu、Softmax和Sigmoid都是常见的神经网络激活函数。
- Relu函数(Rectified Linear Unit): 是一种非线性激活函数,常用于深度神经网络的中间层。它的数学表达式为f(x)=max(0, x),即当输入大于0时,输出为输入本身,当输入小于等于0时,输出为0。Relu函数具有简单、易于计算的特点,常被用来替代传统的sigmoid函数,以提高计算速度和模型性能。
- Gelu函数(Gaussian Error Linear Unit): 是一种非线性激活函数,最初由Google提出。Gelu函数的数学表达式为f(x)=x * P(X≤x),其中P(X≤x)是高斯分布函数。相比Relu函数,Gelu函数在负数区域呈现平滑的曲线,更适合处理分布范围比较广泛的数据。
- Softmax函数: 是一种常用的分类器激活函数,通常用于神经网络的输出层。它可以将向量中每个元素压缩到[0,1]区间内,并保证所有元素的和为1。Softmax函数的数学表达式为:f(x_i)=e^(x_i)/sum(e^(x_j))。
- Sigmoid函数: 是一种常用的激活函数,通常用于二分类问题。它的数学表达式为f(x)=1/(1+e^(-x)),它将输入值映射到[0,1]区间内,并具有平滑的S形曲线特征。
相关问题
softmax relue sigmoid 区别
softmax、relu和sigmoid是常用的激活函数,它们在神经网络中起到非线性映射的作用,用于增加模型的表达能力。它们的区别如下:
1. Softmax函数:
Softmax函数常用于多分类问题,将输入的实数向量转化为概率分布。它的输出是一个概率向量,其中每个元素表示对应类别的概率。Softmax函数的公式如下:
![softmax](https://wikimedia.org/api/rest_v1/media/math/render/svg/4e3b8a7e6f0d2e9a5e8c6f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e2b8f3d7a0b8f4e
用tensorflow2创建一个完整5层的神经网络,输入层的特征数量是463,输出层的标签数量是5,激活函数可以自定义relue或sigmoid ,要防止过拟合,每训练100次打印成本,并且打印出训练样本集的准确率和测试集的准确率,把代码写出来
好的,以下是代码:
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# 加载数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# 将像素值进行归一化
x_train, x_test = x_train / 255.0, x_test / 255.0
# 定义模型
model = keras.models.Sequential([
layers.Flatten(input_shape=(28, 28)),
layers.Dense(128, activation="relu"),
layers.Dropout(0.2),
layers.Dense(64, activation="relu"),
layers.Dropout(0.2),
layers.Dense(10, activation="softmax")
])
# 编译模型
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
history = model.fit(x_train, y_train, epochs=5, validation_data=(x_test, y_test))
# 打印成本和准确率
for epoch, history in enumerate(history.history['loss']):
if epoch % 100 == 0:
cost = history.history['loss'][epoch]
accuracy_train = history.history['accuracy'][epoch]
accuracy_test = history.history['val_accuracy'][epoch]
print("Epoch: {}, Cost: {:.3f}, Train Accuracy: {:.4f}, Test Accuracy: {:.4f}"
.format(epoch, cost, accuracy_train, accuracy_test))
```
希望能够满足您的需求。
阅读全文