两杠是L1 norm
时间: 2023-09-29 10:04:11 浏览: 144
两杠是L1 norm,它是指在正则化项中加入了参数的L1-norm(范数)项。L1正则化项是指参数向量的绝对值之和,即 |w|。与L2正则化不同的是,L1正则化总是与稀疏性挂钩,即倾向于使得一些参数为零,从而实现特征选择和模型简化的效果。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [如何理解机器学习/统计学中的各种范数norm | L1 | L2 | 使用哪种regularization方法?...](https://blog.csdn.net/weixin_30471561/article/details/97472547)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [lasso,lars算法详细推导过程-数学](https://blog.csdn.net/kyle1314608/article/details/104584177)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文