uint8_t *rx_buf++的值为0x02时如何操作使uint16_t add的值也为0x02,代码显示

时间: 2024-10-22 21:14:06 浏览: 25
当`rx_buf`指向的内存区域的值为0x02时,由于`rx_buf`是一个`uint8_t`类型的指针,它实际上存储的是单个字节的数据。如果你想将这个字节转换成一个`uint16_t`类型的值,并让它也为0x02,你需要确保接下来的内存区域也是0x02。因为`uint16_t`通常占两个字节,所以需要连续读取两个字节并组合起来。 在大多数系统中,如果`rx_buf`是一个`uint16_t`数组的指针,你可以使用类似这样的代码: ```c // 假设rx_buf指向的是一个包含两字节的uint16_t数组 uint16_t add = *(reinterpret_cast<uint16_t*>(rx_buf)); // 将指针解包为16位无符号整数 if (*(rx_buf + 1) == 0x02) { // 检查下一个字节是否也等于0x02 add += *(rx_buf + 1); // 如果是,将其添加到当前值上 } // 或者,如果你使用结构体,假设struct包含一个uint16_t成员 struct MyStruct { uint16_t data; }; MyStruct myStruct; memcpy(&myStruct.data, rx_buf, sizeof(myStruct.data)); // 复制单个结构体的data字段 ``` 请注意,这取决于你的硬件架构和数据布局,实际操作可能会有所不同。
相关问题

uint8_t *rx_buf++的值为2时如何操作使uint16_t add的值也为0x02,代码显示

`uint8_t *rx_buf++`表示指针`rx_buf`指向一个`uint8_t`类型的字节,并通过自增运算符增加指针,使其指向下一个字节。如果当前`*rx_buf`的值是2,即二进制表示为00000010(因为最高位为0,所以我们假设这是一个无符号数),那么这个字节对应的十六进制是0x02。 如果你想要将这两个字节合并成一个`uint16_t`类型并且其值保持为0x02,你需要创建一个新的`uint16_t`变量并将两个字节按顺序连接起来。在C语言中,可以这样做: ```c // 假设rx_buf是一个包含两字节数据的内存区域 uint8_t low = *rx_buf; // 存储第一个字节 (0x02) uint8_t high = *(rx_buf + 1); // 自动加一,存储第二个字节(通常不会有,因为++会自动进行) // 将低字节和高字节拼接成一个16位无符号整数 union { uint16_t val; struct { uint8_t low, high; } bytes; } u; u.bytes.low = low; // 设置低8位 u.bytes.high = high; // 设置高8位 // 现在add的值为0x02 uint16_t add = u.val; // 或者直接赋值 ``` 注意,这里假设`rx_buf`至少有两个连续的`uint8_t`可用。如果只有单个字节,或者`*(rx_buf + 1)`没有被正确地设置,上述代码可能不会按照预期工作。另外,实际的`add`变量在这里并未初始化,需要确保它之前已经被正确地清零或赋予了适当的初始值。

tjc8048k070_011串口屏与stm32f407zgt6通信代码

好的,以下是基于HAL库实现的tjc8048k070_011串口屏与STM32F407ZGT6的通信代码示例: ```c #include "stm32f4xx_hal.h" #include <string.h> #define UART_TX_BUF_SIZE 128 #define UART_RX_BUF_SIZE 128 UART_HandleTypeDef huart; uint8_t uart_tx_buf[UART_TX_BUF_SIZE]; uint8_t uart_rx_buf[UART_RX_BUF_SIZE]; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART3_UART_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_USART3_UART_Init(); // 初始化串口屏 uint8_t init_cmd[] = {0x55, 0x03, 0x00, 0x01, 0x01, 0xf9}; HAL_UART_Transmit(&huart, init_cmd, sizeof(init_cmd), 1000); // 发送字符串到串口屏 uint8_t str_cmd[] = {0x55, 0x05, 0x00, 0x02, 0x00, 0x08, 'H', 'e', 'l', 'l', 'o', '!', 0x92}; HAL_UART_Transmit(&huart, str_cmd, sizeof(str_cmd), 1000); while (1) { // 接收串口屏发回的数据 uint8_t rx_len = 0; while (1) { if (HAL_UART_Receive(&huart, &uart_rx_buf[rx_len], 1, 1000) == HAL_TIMEOUT) { break; } rx_len++; if (rx_len >= UART_RX_BUF_SIZE) { break; } if (uart_rx_buf[rx_len-1] == 0x92) // 收到校验位表示数据接收完整 { break; } } if (rx_len > 0) { // 处理接收到的数据 // ... } // 发送指令到串口屏 uint8_t cmd[] = {0x55, 0x03, 0x00, 0x03, 0x01, 0xf8}; HAL_UART_Transmit(&huart, cmd, sizeof(cmd), 1000); HAL_Delay(1000); // 延时等待串口屏执行指令 } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 7; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); } } static void MX_USART3_UART_Init(void) { huart.Instance = USART3; huart.Init.BaudRate = 9600; huart.Init.WordLength = UART_WORDLENGTH_8B; huart.Init.StopBits = UART_STOPBITS_1; huart.Init.Parity = UART_PARITY_NONE; huart.Init.Mode = UART_MODE_TX_RX; huart.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart) != HAL_OK) { Error_Handler(); } } void Error_Handler(void) { while(1) {} } #ifdef USE_FULL_ASSERT void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ } #endif /* USE_FULL_ASSERT */ ``` 在上述代码中,我们使用USART3初始化了STM32F407ZGT6的串口功能,并通过HAL库提供的HAL_UART_Transmit和HAL_UART_Receive函数实现了与tjc8048k070_011串口屏之间的通信。在主函数中,我们首先发送初始化命令到串口屏,然后发送一个显示字符串的命令,并通过HAL_UART_Receive函数接收串口屏发回的数据,最后循环发送一个指令到串口屏并延时等待其执行。 需要注意的是,上述代码仅为示例代码,实际使用时需要根据具体的需求进行修改和调试。另外,需要根据tjc8048k070_011串口屏的通信协议文档来设置正确的波特率、校验位等参数,以确保STM32F407ZGT6与串口屏之间的通信正常。
阅读全文

相关推荐

最新推荐

recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

RM1135开卡工具B17A

RM1135开卡工具B17A
recommend-type

毕业设计&课设_宿舍管理系统:计算机毕业设计项目.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

毕业设计&课设_画手交易管理系统:Java 毕设项目.zip

该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过严格测试运行成功才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。