yolov5 稀疏训练
时间: 2023-11-14 22:04:21 浏览: 184
yolov5模型训练1
Yolov5是一种目标检测算法,稀疏训练是一种优化模型大小和推理速度的方法。下面是yolov5稀疏训练的步骤和代码示例:
1. 安装依赖库sparseml和wandb:
```shell
pip install sparseml wandb
```
2. 导入依赖库和模型:
```python
import torch
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from sparseml.pytorch.models import ModelRegistry, yolo_v5s
from sparseml.pytorch.utils import DataLoaderIterator, ModuleExporterPyTorch, PyTorchModule
```
3. 加载数据集:
```python
transform = transforms.Compose([
transforms.Resize((640, 640)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = datasets.CocoDetection(
'/path/to/coco/train2017',
'/path/to/coco/annotations/instances_train2017.json',
transform=transform
)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
```
4. 加载模型:
```python
model = ModelRegistry.create('yolov5s')
```
5. 定义稀疏训练参数:
```python
sparsity_params = {
'start_epoch': 0,
'end_epoch': 50,
'target_sparsity': 0.5,
'sparsity_function': 'exponential',
'sparsity_function_params': {
'initial_sparsity': 0.0,
'final_sparsity': 0.5,
'sparsity_half_life': 10,
},
'op_types': ['Conv2d'],
'op_names': ['model.0.conv.conv', 'model.1.conv.conv', 'model.2.conv.conv'],
'importance': 'layer',
'magnitude_sparsity': False,
'params': {
'weight': {
'schedule': 'polynomial',
'power': 1,
'initial_sparsity': 0.0,
'final_sparsity': 0.5,
},
'bias': {
'schedule': 'constant',
'initial_sparsity': 0.0,
'final_sparsity': 0.0,
},
},
}
```
6. 进行稀疏训练:
```python
for epoch in range(50):
model.train()
train_loss = 0
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = compute_loss(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
# apply sparsity
if epoch >= sparsity_params['start_epoch'] and epoch <= sparsity_params['end_epoch']:
sparsity_level = sparsity_params['sparsity_function_params']['initial_sparsity'] + \
(sparsity_params['sparsity_function_params']['final_sparsity'] - sparsity_params['sparsity_function_params']['initial_sparsity']) * \
(1 - (epoch - sparsity_params['start_epoch']) / (sparsity_params['end_epoch'] - sparsity_params['start_epoch']))
model.apply_sparsity(sparsity_level, sparsity_params)
```
7. 导出稀疏模型:
```python
exporter = ModuleExporterPyTorch(model, PyTorchModule)
exporter.export('sparse_yolov5s.pt')
```
阅读全文