PPO实现 pytorch
时间: 2023-11-12 15:09:28 浏览: 113
PPO(Proximal Policy Optimization)是一种用于强化学习的策略优化算法。下面是使用PyTorch实现PPO的基本步骤:
1. 定义神经网络模型:使用PyTorch创建一个神经网络模型,该模型将用于估计策略和价值函数。
2. 定义优化器:选择一个适合的优化器,如Adam,用于更新神经网络的参数。
3. 定义损失函数:定义PPO的损失函数,通常由两部分组成,一个是策略损失,即策略梯度和优势函数的乘积,另一个是价值函数损失,即预测值与真实值之间的均方差。
4. 收集经验数据:与环境进行交互,收集一批经验数据,包括状态、动作、奖励等信息。
5. 计算优势函数:使用收集到的经验数据计算每个状态的优势函数,即当前状态相对于平均回报的相对优势值。
6. 计算梯度和更新参数:使用经验数据计算梯度并更新神经网络的参数。这里需要使用PPO中的重要性采样比率来控制更新步长,并确保策略改变不会过大。
7. 重复步骤4至6:通过多次迭代收集更多的经验数据,并使用这些数据来更新模型的参数。
8. 在环境中进行测试:使用训练后的模型在环境中进行测试,评估其性能。
以上是PPO在PyTorch中的基本实现步骤。你可以根据具体的问题和需求进行相应的调整和改进。
相关问题
PPO2 pytorch
PPO2是一种基于重要性采样的算法,用于强化学习中的策略优化。它解决了重要性采样的缺陷问题,并在训练效果上优于传统的PPO算法。PPO2使用了PyTorch作为实现框架,并且在训练过程中可以应用于Pendulum环境等不同的场景。通过创建网络、训练和测试等环节,可以有效地使用PPO2算法进行强化学习任务的优化。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [PPO2代码 pytorch框架](https://blog.csdn.net/fangchenglia/article/details/125725093)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
ppo代码的pytorch实现
以下是一个简单的PPO算法的PyTorch实现,主要参考了OpenAI baselines中的实现。这里以CartPole-v1为例:
```python
import torch
import torch.nn as nn
from torch.distributions import Categorical
import gym
class ActorCritic(nn.Module):
def __init__(self, obs_shape, action_space):
super(ActorCritic, self).__init__()
self.observation_space = obs_shape
self.action_space = action_space
self.actor_fc1 = nn.Linear(obs_shape[0], 64)
self.actor_fc2 = nn.Linear(64, action_space.n)
self.critic_fc1 = nn.Linear(obs_shape[0], 64)
self.critic_fc2 = nn.Linear(64, 1)
self.log_probs = []
self.values = []
self.rewards = []
self.masks = []
def act(self, obs):
actor_x = torch.tanh(self.actor_fc1(obs))
action_scores = self.actor_fc2(actor_x)
dist = Categorical(logits=action_scores)
action = dist.sample()
self.log_probs.append(dist.log_prob(action))
return action.item()
def evaluate(self, obs):
actor_x = torch.tanh(self.actor_fc1(obs))
action_scores = self.actor_fc2(actor_x)
dist = Categorical(logits=action_scores)
action = dist.sample()
log_prob = dist.log_prob(action)
critic_x = torch.tanh(self.critic_fc1(obs))
value = self.critic_fc2(critic_x)
self.log_probs.append(log_prob)
self.values.append(value)
return action.item(), value.item()
def clear_memory(self):
del self.log_probs[:]
del self.values[:]
del self.rewards[:]
del self.masks[:]
class PPO:
def __init__(self, env_name, batch_size=64, gamma=0.99, clip_param=0.2, ppo_epoch=10, lr=3e-4, eps=1e-5):
self.env = gym.make(env_name)
self.obs_space = self.env.observation_space
self.act_space = self.env.action_space
self.clip_param = clip_param
self.ppo_epoch = ppo_epoch
self.batch_size = batch_size
self.gamma = gamma
self.eps = eps
self.lr = lr
self.net = ActorCritic(self.obs_space.shape, self.act_space)
self.optimizer = torch.optim.Adam(self.net.parameters(), lr=self.lr, eps=self.eps)
self.net.train()
def get_batch(self):
obs = self.obs_buf[np.asarray(self.batch_ids)]
actions = self.act_buf[np.asarray(self.batch_ids)]
rewards = self.rew_buf[np.asarray(self.batch_ids)]
dones = self.done_buf[np.asarray(self.batch_ids)]
next_obs = self.obs_buf[np.asarray(self.batch_ids) + 1]
masks = 1 - dones.astype(np.float32)
return obs, actions, rewards, next_obs, masks
def learn(self, obs, actions, rewards, next_obs, masks):
obs = torch.tensor(obs, dtype=torch.float32)
actions = torch.tensor(actions, dtype=torch.float32)
rewards = torch.tensor(rewards, dtype=torch.float32).unsqueeze(1)
masks = torch.tensor(masks, dtype=torch.float32).unsqueeze(1)
next_obs = torch.tensor(next_obs, dtype=torch.float32)
with torch.no_grad():
_, next_value = self.net.evaluate(next_obs)
advantage = rewards + self.gamma * masks * next_value - self.net.values[-1]
returns = []
gae = 0
lambda_ = 0.95
for i in reversed(range(len(rewards))):
delta = rewards[i] + self.gamma * masks[i] * self.net.values[i + 1] - self.net.values[i]
gae = delta + self.gamma * masks[i] * lambda_ * gae
returns.insert(0, gae + self.net.values[i])
returns = torch.tensor(returns, dtype=torch.float32)
for _ in range(self.ppo_epoch):
for ind in BatchSampler(SubsetRandomSampler(range(self.batch_size)), self.batch_size, False):
log_prob, value = self.net.evaluate(obs[ind])
ratio = torch.exp(log_prob - self.net.log_probs[ind])
adv = advantage[ind]
surr1 = ratio * adv
surr2 = torch.clamp(ratio, 1 - self.clip_param, 1 + self.clip_param) * adv
actor_loss = -torch.min(surr1, surr2).mean()
critic_loss = (returns[ind] - value).pow(2).mean()
loss = actor_loss + 0.5 * critic_loss
# optimize
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.net.clear_memory()
def run(self, max_iter=10000):
obs = self.env.reset()
episode_reward = 0
for i in range(max_iter):
action = self.net.act(torch.tensor(obs, dtype=torch.float32))
next_obs, reward, done, _ = self.env.step(action)
episode_reward += reward
self.net.rewards.append(reward)
self.net.masks.append(1 - done)
obs = next_obs
if done:
obs = self.env.reset()
self.net.clear_memory()
if i % self.batch_size == 0 and i != 0:
self.learn(*self.get_batch())
if i % 100 == 0 and i != 0:
print('Episode {}, Reward: {:.2f}'.format(i, episode_reward / 100))
episode_reward = 0
```
上述代码中,我们首先定义了一个ActorCritic类,它包括一个Actor和一个Critic。Actor根据当前状态输出动作的概率分布,并根据分布进行采样;Critic则输出当前状态的价值。在PPO算法中,我们需要同时更新Actor和Critic。PPO算法的核心在于计算Advantage,可以参考第一篇回答中的解释。此外,我们还需要使用一个BatchSampler对数据进行采样。在run函数中,我们首先根据当前状态获取一个动作,然后执行该动作,并将相关的信息存储在ActorCritic类中。如果当前episode结束,我们则清空ActorCritic类中的信息,并重置环境。如果当前步数可以被batch_size整除,我们则进行PPO算法的更新。
阅读全文