pytorch ppo代码示例
时间: 2024-04-12 17:26:17 浏览: 184
pytorch例程_pytorch_
5星 · 资源好评率100%
PyTorch PPO(Proximal Policy Optimization)是一种常用的强化学习算法,用于训练策略模型。下面是一个简单的PyTorch PPO代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import gym
# 定义策略网络
class Policy(nn.Module):
def __init__(self, input_dim, output_dim):
super(Policy, self).__init__()
self.fc = nn.Linear(input_dim, 64)
self.actor = nn.Linear(64, output_dim)
self.critic = nn.Linear(64, 1)
def forward(self, x):
x = torch.relu(self.fc(x))
action_probs = torch.softmax(self.actor(x), dim=-1)
state_value = self.critic(x)
return action_probs, state_value
# 定义PPO算法
class PPO:
def __init__(self, input_dim, output_dim):
self.policy = Policy(input_dim, output_dim)
self.optimizer = optim.Adam(self.policy.parameters(), lr=0.001)
def select_action(self, state):
state = torch.FloatTensor(state)
action_probs, _ = self.policy(state)
action_dist = torch.distributions.Categorical(action_probs)
action = action_dist.sample()
return action.item()
def update(self, states, actions, log_probs, returns, advantages):
states = torch.FloatTensor(states)
actions = torch.LongTensor(actions)
log_probs = torch.FloatTensor(log_probs)
returns = torch.FloatTensor(returns)
advantages = torch.FloatTensor(advantages)
# 计算策略损失和价值损失
action_probs, state_values = self.policy(states)
dist = torch.distributions.Categorical(action_probs)
new_log_probs = dist.log_prob(actions)
ratio = torch.exp(new_log_probs - log_probs)
surr1 = ratio * advantages
surr2 = torch.clamp(ratio, 1-0.2, 1+0.2) * advantages
policy_loss = -torch.min(surr1, surr2).mean()
value_loss = nn.MSELoss()(state_values, returns.unsqueeze(1))
# 更新策略网络
self.optimizer.zero_grad()
loss = policy_loss + 0.5 * value_loss
loss.backward()
self.optimizer.step()
# 创建环境和PPO对象
env = gym.make('CartPole-v1')
input_dim = env.observation_space.shape
output_dim = env.action_space.n
ppo = PPO(input_dim, output_dim)
# 训练PPO模型
max_episodes = 1000
max_steps = 200
for episode in range(max_episodes):
state = env.reset()
states, actions, log_probs, rewards = [], [], [], []
for step in range(max_steps):
action = ppo.select_action(state)
next_state, reward, done, _ = env.step(action)
states.append(state)
actions.append(action)
log_probs.append(torch.log(ppo.policy(torch.FloatTensor(state))[action]))
rewards.append(reward)
state = next_state
if done:
break
# 计算回报和优势值
returns = []
advantages = []
G = 0
for r in reversed(rewards):
G = r + 0.99 * G
returns.insert(0, G)
returns = torch.tensor(returns)
returns = (returns -9)
for t in range(len(rewards)):
advantages.append(returns[t] - ppo.policy(torch.FloatTensor(states[t])))
advantages = torch.tensor(advantages)
# 更新策略网络
ppo.update(states, actions, log_probs, returns, advantages)
# 使用训练好的模型进行测试
state = env.reset()
total_reward = 0
while True:
env.render()
action = ppo.select_action(state)
state, reward, done, _ = env.step(action)
total_reward += reward
if done:
break
print("Total reward:", total_reward)
```
这个示例代码使用PyTorch实现了一个简单的PPO算法,用于在CartPole-v1环境中训练一个策略模型。代码中包含了策略网络的定义、PPO算法的实现以及训练和测试的过程。
阅读全文