请给出一个PPO算法的代码示例
时间: 2023-12-30 16:45:31 浏览: 143
好的,以下是一个简单的PPO算法的示例(基于PyTorch):
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 策略网络
class PolicyNet(nn.Module):
def __init__(self, obs_dim, act_dim, hidden_size=128):
super(PolicyNet, self).__init__()
self.layers = nn.Sequential(
nn.Linear(obs_dim, hidden_size),
nn.Tanh(),
nn.Linear(hidden_size, hidden_size),
nn.Tanh(),
nn.Linear(hidden_size, act_dim),
nn.Softmax(dim=-1)
)
def forward(self, obs):
return self.layers(obs)
# PPO算法
class PPO:
def __init__(self, obs_dim, act_dim, lr=1e-3, clip_ratio=0.2, gamma=0.99, gae_lambda=0.95, eps=1e-5):
self.obs_dim = obs_dim
self.act_dim = act_dim
self.clip_ratio = clip_ratio
self.gamma = gamma
self.gae_lambda = gae_lambda
self.eps = eps
# 创建策略网络和价值网络
self.policy_net = PolicyNet(obs_dim, act_dim)
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=lr)
def compute_advantages(self, rewards, values, masks):
# 计算优势值
advantages = np.zeros_like(rewards)
last_advantage = 0
for t in reversed(range(len(rewards))):
delta = rewards[t] + self.gamma * values[t + 1] * masks[t] - values[t]
last_advantage = delta + self.gamma * self.gae_lambda * masks[t] * last_advantage
advantages[t] = last_advantage
return advantages
def train(self, obs, actions, rewards, values, masks):
# 计算策略网络和价值网络的损失函数
advantages = self.compute_advantages(rewards, values, masks)
advantages = (advantages - advantages.mean()) / (advantages.std() + self.eps)
old_log_probs = torch.log(self.policy_net(obs).gather(1, actions))
old_log_probs = old_log_probs.detach()
for i in range(10):
# 更新策略网络
log_probs = torch.log(self.policy_net(obs).gather(1, actions))
ratio = torch.exp(log_probs - old_log_probs)
clipped_ratio = torch.clamp(ratio, 1 - self.clip_ratio, 1 + self.clip_ratio)
policy_loss = -(torch.min(ratio * advantages, clipped_ratio * advantages)).mean()
self.optimizer.zero_grad()
policy_loss.backward()
self.optimizer.step()
```
希望对你有帮助!
阅读全文