帮我写一段强化学习ppo代码
时间: 2023-08-20 18:05:44 浏览: 167
当然可以!下面是一个简单的强化学习Proximal Policy Optimization(PPO)算法的代码示例:
```python
import gym
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions import Categorical
# 定义策略网络
class Policy(nn.Module):
def __init__(self, input_dim, output_dim):
super(Policy, self).__init__()
self.fc = nn.Linear(input_dim, 64)
self.fc2 = nn.Linear(64, output_dim)
def forward(self, x):
x = torch.relu(self.fc(x))
x = self.fc2(x)
return torch.softmax(x, dim=-1)
# 定义PPO算法
class PPO:
def __init__(self, input_dim, output_dim):
self.policy = Policy(input_dim, output_dim)
self.optimizer = optim.Adam(self.policy.parameters(), lr=0.001)
self.gamma = 0.99
self.epsilon = 0.2
def select_action(self, state):
state = torch.from_numpy(state).float().unsqueeze(0)
probs = self.policy(state)
m = Categorical(probs)
action = m.sample()
return action.item(), m.log_prob(action)
def update_policy(self, rewards, log_probs):
discounted_rewards = []
R = 0
for r in reversed(rewards):
R = r + self.gamma * R
discounted_rewards.insert(0, R)
discounted_rewards = torch.tensor(discounted_rewards)
discounted_rewards = (discounted_rewards - discounted_rewards.mean()) / (discounted_rewards.std() + 1e-5)
old_probs = torch.exp(log_probs)
for _ in range(10):
new_probs = self.policy(state)
new_probs = torch.gather(new_probs, 1, action.unsqueeze(1))
ratio = new_probs / old_probs
surr1 = ratio * discounted_rewards
surr2 = torch.clamp(ratio, 1 - self.epsilon, 1 + self.epsilon) * discounted_rewards
loss = -torch.min(surr1, surr2)
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
# 初始化环境和PPO算法
env = gym.make('CartPole-v1')
ppo = PPO(env.observation_space.shape[0], env.action_space.n)
# 训练PPO算法
for i in range(1000):
state = env.reset()
done = False
rewards = []
log_probs = []
while not done:
action, log_prob = ppo.select_action(state)
next_state, reward, done, _ = env.step(action)
rewards.append(reward)
log_probs.append(log_prob)
state = next_state
ppo.update_policy(rewards, log_probs)
# 测试训练好的策略
state = env.reset()
done = False
total_reward = 0
while not done:
env.render()
action, _ = ppo.select_action(state)
next_state, reward, done, _ = env.step(action)
total_reward += reward
state = next_state
print("Total reward:", total_reward)
env.close()
```
这段代码使用了PyTorch库来实现PPO算法,并在CartPole-v1环境下进行训练和测试。请确保你已经安装了相应的依赖库(如gym和torch)以及环境(如CartPole-v1)。
注意:以上代码仅作为示例,实际使用中可能需要根据具体问题进行适当的修改和调整。希望对你有帮助!如果有任何问题,请随时提问。
阅读全文