bp神经网络c语言代码
时间: 2023-07-18 22:01:30 浏览: 116
bp神经网络C语言实现代码
### 回答1:
BP神经网络是一种常用的人工神经网络模型,它基于反向传播算法,用于解决分类和回归问题。下面给出一个简单的BP神经网络的C语言代码示例:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define INPUT_SIZE 2
#define HIDDEN_SIZE 3
#define OUTPUT_SIZE 1
#define LEARNING_RATE 0.5
#define EPOCHS 1000
// 定义神经网络结构
typedef struct {
double input[INPUT_SIZE];
double hidden[HIDDEN_SIZE];
double output[OUTPUT_SIZE];
double weights_ih[INPUT_SIZE][HIDDEN_SIZE];
double weights_ho[HIDDEN_SIZE][OUTPUT_SIZE];
} NeuralNetwork;
// 初始化神经网络
void init(NeuralNetwork* nn) {
// 初始化输入层到隐藏层的权重
for (int i = 0; i < INPUT_SIZE; i++) {
for (int j = 0; j < HIDDEN_SIZE; j++) {
nn->weights_ih[i][j] = (double)rand() / RAND_MAX;
}
}
// 初始化隐藏层到输出层的权重
for (int i = 0; i < HIDDEN_SIZE; i++) {
for (int j = 0; j < OUTPUT_SIZE; j++) {
nn->weights_ho[i][j] = (double)rand() / RAND_MAX;
}
}
}
// 前向传播
void forward(NeuralNetwork* nn) {
for (int i = 0; i < HIDDEN_SIZE; i++) {
double sum = 0;
for (int j = 0; j < INPUT_SIZE; j++) {
sum += nn->input[j] * nn->weights_ih[j][i];
}
nn->hidden[i] = 1 / (1 + exp(-sum));
}
for(int i = 0; i < OUTPUT_SIZE; i++) {
double sum = 0;
for(int j = 0; j < HIDDEN_SIZE; j++) {
sum += nn->hidden[j] * nn->weights_ho[j][i];
}
nn->output[i] = 1 / (1 + exp(-sum));
}
}
// 反向传播
void backward(NeuralNetwork* nn, double target) {
double delta_o = (target - nn->output[0]) * nn->output[0] * (1 - nn->output[0]);
for(int i = 0; i < HIDDEN_SIZE; i++) {
double delta_h = delta_o * nn->weights_ho[i][0] * nn->hidden[i] * (1 - nn->hidden[i]);
for(int j = 0; j < INPUT_SIZE; j++) {
nn->weights_ih[j][i] += LEARNING_RATE * nn->input[j] * delta_h;
}
nn->weights_ho[i][0] += LEARNING_RATE * nn->hidden[i] * delta_o;
}
}
// 主函数
int main() {
NeuralNetwork nn;
init(&nn);
double input[INPUT_SIZE] = {0.1, 0.2};
double target = 0.3;
for (int epoch = 0; epoch < EPOCHS; epoch++) {
for (int i = 0; i < INPUT_SIZE; i++) {
nn.input[i] = input[i];
}
forward(&nn);
backward(&nn, target);
}
printf("Output: %lf\n", nn.output[0]);
return 0;
}
```
上述代码实现了一个具有一个输入层,一个隐藏层和一个输出层的BP神经网络,并使用随机权重和输入进行训练。代码中使用sigmoid函数作为激活函数,并通过反向传播算法更新权重以减少误差。主函数中通过迭代训练多个周期来提高模型的准确性,最后输出预测结果。
### 回答2:
BP神经网络是一种经典的神经网络模型,在C语言中可以通过编写代码来实现。下面是一个简单的BP神经网络的C语言代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define INPUTS 2
#define HIDDEN 3
#define OUTPUTS 1
#define LEARNING_RATE 0.1
#define MAX_ITERATIONS 10000
#define THRESHOLD 0.05
// 隐含层和输出层神经元的权值和阈值
double hidden[HIDDEN];
double output[OUTPUTS];
double hiddenBias[HIDDEN];
double outputBias[OUTPUTS];
// 输入层与隐含层之间的权值和阈值
double inputHiddenWeights[INPUTS][HIDDEN];
double inputHiddenBias[HIDDEN];
void initializeWeights() {
// 初始化权值和阈值
for (int i = 0; i < INPUTS; i++) {
for (int j = 0; j < HIDDEN; j++) {
inputHiddenWeights[i][j] = rand() / (double)RAND_MAX;
}
}
for (int i = 0; i < HIDDEN; i++) {
hiddenBias[i] = rand() / (double)RAND_MAX;
}
for (int i = 0; i < OUTPUTS; i++) {
outputBias[i] = rand() / (double)RAND_MAX;
}
}
double sigmoid(double x) {
// sigmoid激活函数
return 1.0 / (1.0 + exp(-x));
}
void feedForward(double inputs[]) {
// 前向传播
for (int i = 0; i < HIDDEN; i++) {
hidden[i] = 0.0;
for (int j = 0; j < INPUTS; j++) {
hidden[i] += inputs[j] * inputHiddenWeights[j][i];
}
hidden[i] += inputHiddenBias[i];
hidden[i] = sigmoid(hidden[i]);
}
for (int i = 0; i < OUTPUTS; i++) {
output[i] = 0.0;
for (int j = 0; j < HIDDEN; j++) {
output[i] += hidden[j] * hiddenOutputWeights[j][i];
}
output[i] += outputBias[i];
output[i] = sigmoid(output[i]);
}
}
void backPropagate(double inputs[], double targets[]) {
// 反向传播
double deltaHidden[HIDDEN] = {0};
double deltaOutput[OUTPUTS] = {0};
// 更新输出层权值和阈值
for (int i = 0; i < OUTPUTS; i++) {
deltaOutput[i] = (targets[i] - output[i]) * output[i] * (1.0 - output[i]);
for (int j = 0; j < HIDDEN; j++) {
hiddenOutputWeights[j][i] += LEARNING_RATE * deltaOutput[i] * hidden[j];
}
outputBias[i] += LEARNING_RATE * deltaOutput[i];
}
// 更新隐含层权值和阈值
for (int i = 0; i < HIDDEN; i++) {
double sum = 0.0;
for (int j = 0; j < OUTPUTS; j++) {
sum += deltaOutput[j] * hiddenOutputWeights[i][j];
}
deltaHidden[i] = sum * hidden[i] * (1.0 - hidden[i]);
for (int j = 0; j < INPUTS; j++) {
inputHiddenWeights[j][i] += LEARNING_RATE * deltaHidden[i] * inputs[j];
}
hiddenBias[i] += LEARNING_RATE * deltaHidden[i];
}
}
int train(double inputs[][INPUTS], double targets[][OUTPUTS], int numPatterns) {
int iterations = 0;
double error;
do {
error = 0.0;
for (int p = 0; p < numPatterns; p++) {
feedForward(inputs[p]);
backPropagate(inputs[p], targets[p]);
error += 0.5 * ((targets[p][0] - output[0]) * (targets[p][0] - output[0]));
}
iterations++;
if (iterations > MAX_ITERATIONS) {
break;
}
} while (error > THRESHOLD);
return iterations;
}
int main() {
// 训练样本和目标设置
double inputs[4][INPUTS] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
double targets[4][OUTPUTS] = {{0}, {1}, {1}, {0}};
initializeWeights();
int iterations = train(inputs, targets, 4);
printf("训练完成,迭代次数:%d\n", iterations);
return 0;
}
```
以上是一个简单的BP神经网络的C语言代码。通过定义输入层、隐含层和输出层的神经元数量,设定学习速率、最大迭代次数和误差阈值,并实现了初始化权值和阈值、sigmoid激活函数、前向传播、反向传播以及训练函数。在main函数中,设定了训练样本和目标,并调用了训练函数进行训练。最后输出训练完成后的迭代次数。
阅读全文