tf.keras.optimizers.Adam(learning_rate=0.01, decay=5e-5)
时间: 2024-04-18 21:31:55 浏览: 187
tf.keras_分类模块_DNN-selu-dropout.ipynb_keras_tf.keras_DNN分类_DNN_pl
对于给定的学习率和衰减率,tf.keras.optimizers.Adam(learning_rate=0.01, decay=5e-5)创建一个Adam优化器对象。Adam优化器是一种基于梯度下降的优化算法,用于调整神经网络的权重和偏置,以最小化损失函数。学习率指定了每次更新权重时的步长大小,而衰减率用于逐渐减小学习率。
在这里,学习率被设置为0.01,它决定了每次更新权重时改变的大小。较大的学习率可能导致更快的收敛速度,但也可能导致更不稳定的训练过程。较小的学习率可以提供更稳定的训练过程,但可能需要更多的迭代次数才能收敛到最优解。
而衰减率被设置为5e-5,它决定了学习率随时间逐渐减小的速度。通过衰减率,我们可以使学习率在训练过程中逐渐减小,以便更好地控制模型的收敛性。
总而言之,tf.keras.optimizers.Adam(learning_rate=0.01, decay=5e-5)创建了一个Adam优化器对象,并指定了学习率和衰减率。这个优化器可以在神经网络的训练过程中用于调整权重和偏置,以最小化损失函数。
阅读全文