Kruskal算法来计算无向连通图的最小生成树边集合数量存在相同边,此时作为两种
时间: 2024-03-09 11:12:52 浏览: 96
感谢指出,您是正确的。在Kruskal算法中,可能存在相同权重的边。在计算不同选择边的方法数量时,应考虑到这一点。
以下是修改后的Java代码示例,使用Kruskal算法来计算无向连通图的最小生成树边集合数量,同时考虑到相同权重的边:
```java
import java.util.*;
class Edge {
int u, v, weight;
public Edge(int u, int v, int weight) {
this.u = u;
this.v = v;
this.weight = weight;
}
}
class UnionFind {
int[] parent;
int[] rank;
public UnionFind(int n) {
parent = new int[n];
rank = new int[n];
Arrays.fill(rank, 1);
for (int i = 0; i < n; i++) {
parent[i] = i;
}
}
public int find(int x) {
if (x != parent[x]) {
parent[x] = find(parent[x]);
}
return parent[x];
}
public void union(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if (rootX != rootY) {
if (rank[rootX] > rank[rootY]) {
parent[rootY] = rootX;
} else if (rank[rootX] < rank[rootY]) {
parent[rootX] = rootY;
} else {
parent[rootY] = rootX;
rank[rootX]++;
}
}
}
}
public class MinimumSpanningTreeCount {
public static long countMSTs(int n, Edge[] edges) {
Arrays.sort(edges, Comparator.comparingInt(e -> e.weight));
UnionFind uf = new UnionFind(n);
long count = 1;
int i = 0;
while (i < edges.length) {
int j = i;
while (j < edges.length && edges[j].weight == edges[i].weight) {
j++;
}
int sameWeightCount = j - i;
Set<Integer> parents = new HashSet<>();
for (int k = i; k < j; k++) {
int u = edges[k].u;
int v = edges[k].v;
if (uf.find(u) != uf.find(v)) {
parents.add(uf.find(u));
parents.add(uf.find(v));
}
}
for (int parent : parents) {
count *= (long) Math.pow(2, sameWeightCount - uf.rank[parent]);
}
for (int k = i; k < j; k++) {
int u = edges[k].u;
int v = edges[k].v;
if (uf.find(u) != uf.find(v)) {
uf.union(u, v);
}
}
i = j;
}
return count;
}
public static void main(String[] args) {
int n = 4;
int m = 5;
Edge[] edges = new Edge[m];
edges[0] = new Edge(0, 1, 1);
edges[1] = new Edge(0, 2, 2);
edges[2] = new Edge(0, 3, 3);
edges[3] = new Edge(1, 2, 4);
edges[4] = new Edge(2, 3, 5);
long count = countMSTs(n, edges);
System.out.println("Different methods of choosing edges: " + count);
}
}
```
这个修改后的代码在计算不同选择边的方法数量时,考虑了相同权重的边。它将具有相同权重的边分组,并在计算数量时,根据连通分量的大小进行了调整。通过这种方式,可以正确计算无向连通图的最小生成树边集合数量。
阅读全文