yolov7代码复现 pytorch
时间: 2023-09-30 15:11:26 浏览: 230
yolo论文与pytorch复现版
5星 · 资源好评率100%
要复现Yolov7代码,你可以按照以下步骤进行操作:
1. 首先,你需要下载Yolov7的源码。你可以在GitHub上找到源码的位置:https://github.com/WongKinYiu/yolov7。你可以直接下载并解压,或者使用git进行复制:'git clone https://gitee.com/YFwinston/yolov7.git'。
2. 创建一个虚拟环境,以便在其中安装和运行Yolov7。你可以使用Anaconda来创建虚拟环境。通过运行以下命令来创建一个名为Yolo的虚拟环境:conda create -n Yolo python=3.7。
3. 激活虚拟环境。运行以下命令来激活Yolo虚拟环境:conda activate Yolo。
4. 在虚拟环境中安装所需的包。运行以下命令来安装必要的包:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple。请注意,你需要确保CUDA和PyTorch的版本对应正确,否则可能会导致错误。你可以在PyTorch官方网站上找到之前版本的PyTorch和对应的CUDA版本:https://pytorch.org/previous-versions/。
5. 下载Yolov7的权重文件。你可以在源码的README文件中找到对应的权重下载链接。将权重文件下载并放在weights文件夹下。
6. 运行detect.py脚本进行推理。你可以选择一张图片进行推理,并将可视化结果保存在runs/detect中。确保验证图片的路径正确。运行以下命令来进行推理:python detect.py --weights weights/yolov7.pt --conf 0.25 --img-size 640 --source data/bdd100k/images/val/b1c66a42-6f7d68ca/b1c66a42-6f7d68ca-0000001.jpg。
完成以上步骤后,你就成功复现了Yolov7代码。
阅读全文