merge = np.uint8(target * 0.5 + warp * 0.5)
时间: 2024-04-25 12:22:50 浏览: 144
这个代码段是将两个图像进行融合,其中`target`和`warp`是两个输入图像。通过将它们分别乘以0.5并相加,然后将结果转换为无符号8位整数类型(`np.uint8`),实现了两个图像的平均融合。这样做的目的是在融合后的图像中保留两个图像的特征。\[1\]
#### 引用[.reference_title]
- *1* *2* *3* [【项目实践】车距+车辆+车道线+行人检测项目实践](https://blog.csdn.net/qq_24819773/article/details/105446829)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
相关问题
def auto_whiteBalance(img): b, g, r = cv2.split(img) Y = 0.299 * r + 0.587 * g + 0.114 * b Cr = 0.5 * r - 0.419 * g - 0.081 * b Cb = -0.169 * r - 0.331 * g + 0.5 * b Mr = np.mean(Cr) Mb = np.mean(Cb) Dr = np.var(Cr) Db = np.var(Cb) temp_arry = (np.abs(Cb - (Mb + Db * np.sign(Mb))) < 1.5 * Db) & ( np.abs(Cr - (1.5 * Mr + Dr * np.sign(Mr))) < 1.5 * Dr) RL = Y * temp_arry # 选取候选白点数的最亮10%确定为最终白点,并选择其前10%中的最小亮度值 # L_list = list(np.reshape(RL, (RL.shape[0] * RL.shape[1],)).astype(np.int)) L_list = list(np.reshape(RL, (RL.shape[0] * RL.shape[1],)).astype(int)) hist_list = np.zeros(256) min_val = 0 sum = 0 for val in L_list: hist_list[val] += 1 for l_val in range(255, 0, -1): sum += hist_list[l_val] if sum >= len(L_list) * 0.1: min_val = l_val break # 取最亮的前10%为最终的白点 white_index = RL < min_val RL[white_index] = 0 # 计算选取为白点的每个通道的增益 b[white_index] = 0 g[white_index] = 0 r[white_index] = 0 Y_max = np.max(RL) b_gain = Y_max / (np.sum(b) / np.sum(b > 0)) g_gain = Y_max / (np.sum(g) / np.sum(g > 0)) r_gain = Y_max / (np.sum(r) / np.sum(r > 0)) b, g, r = cv2.split(img) b = b * b_gain g = g * g_gain r = r * r_gain # 溢出处理 b[b > 255] = 255 g[g > 255] = 255 r[r > 255] = 255 res_img = cv2.merge((b, g, r)) return res_img
感谢提供代码。根据您的代码,问题可能出现在加载图像数据的部分。请确保您正确地加载了图像数据,并且可以通过`cv2.imshow()`函数显示图像。如果您遇到了无法加载图像数据的问题,请尝试检查图像路径是否正确,并确保图像文件存在。另外,确保OpenCV库已正确安装。
如果您已经确认图像数据正确加载,并且仍然遇到问题,请提供更多关于图像数据的详细信息,例如图像的尺寸和数据类型。这样我就能更好地帮助您解决问题。
解释这一段代码def auto_whiteBalance(img): b, g, r = cv2.split(img) Y = 0.299 * r + 0.587 * g + 0.114 * b Cr = 0.5 * r - 0.419 * g - 0.081 * b Cb = -0.169 * r - 0.331 * g + 0.5 * b Mr = np.mean(Cr) Mb = np.mean(Cb) Dr = np.var(Cr) Db = np.var(Cb) temp_arry = (np.abs(Cb - (Mb + Db * np.sign(Mb))) < 1.5 * Db) & ( np.abs(Cr - (1.5 * Mr + Dr * np.sign(Mr))) < 1.5 * Dr) RL = Y * temp_arry # 选取候选白点数的最亮10%确定为最终白点,并选择其前10%中的最小亮度值 # L_list = list(np.reshape(RL, (RL.shape[0] * RL.shape[1],)).astype(np.int)) L_list = list(np.reshape(RL, (RL.shape[0] * RL.shape[1],)).astype(int)) hist_list = np.zeros(256) min_val = 0 sum = 0 for val in L_list: hist_list[val] += 1 for l_val in range(255, 0, -1): sum += hist_list[l_val] if sum >= len(L_list) * 0.1: min_val = l_val break # 取最亮的前10%为最终的白点 white_index = RL < min_val RL[white_index] = 0 # 计算选取为白点的每个通道的增益 b[white_index] = 0 g[white_index] = 0 r[white_index] = 0 Y_max = np.max(RL) b_gain = Y_max / (np.sum(b) / np.sum(b > 0)) g_gain = Y_max / (np.sum(g) / np.sum(g > 0)) r_gain = Y_max / (np.sum(r) / np.sum(r > 0)) b, g, r = cv2.split(img) b = b * b_gain g = g * g_gain r = r * r_gain # 溢出处理 b[b > 255] = 255 g[g > 255] = 255 r[r > 255] = 255 res_img = cv2.merge((b, g, r)) return res_img
这段代码是一个自动白平衡算法。它的作用是校正图像的颜色,使得图像中的白色看起来更加真实和自然。
首先,代码通过`cv2.split()`函数将输入的图像拆分成三个通道:蓝色通道(b)、绿色通道(g)和红色通道(r)。
然后,代码根据以下公式计算三个通道的亮度(Y)、红色色度(Cr)和蓝色色度(Cb):
```python
Y = 0.299 * r + 0.587 * g + 0.114 * b
Cr = 0.5 * r - 0.419 * g - 0.081 * b
Cb = -0.169 * r - 0.331 * g + 0.5 * b
```
接下来,代码计算红色色度(Cr)和蓝色色度(Cb)的均值(Mr、Mb)和方差(Dr、Db):
```python
Mr = np.mean(Cr)
Mb = np.mean(Cb)
Dr = np.var(Cr)
Db = np.var(Cb)
```
然后,代码根据一定的条件筛选出候选白点,并计算最亮的10%作为最终白点的亮度值:
```python
temp_arry = (np.abs(Cb - (Mb + Db * np.sign(Mb))) < 1.5 * Db) & (
np.abs(Cr - (1.5 * Mr + Dr * np.sign(Mr))) < 1.5 * Dr)
RL = Y * temp_arry
L_list = list(np.reshape(RL, (RL.shape[0] * RL.shape[1],)).astype(int))
hist_list = np.zeros(256)
min_val = 0
sum = 0
for val in L_list:
hist_list[val] += 1
for l_val in range(255, 0, -1):
sum += hist_list[l_val]
if sum >= len(L_list) * 0.1:
min_val = l_val
break
```
然后,代码根据最终白点的亮度值,将低于该亮度值的像素置为0,以消除图像中的白点:
```python
white_index = RL < min_val
RL[white_index] = 0
```
接下来,代码计算每个通道的增益,将选取为白点的像素进行增益调整:
```python
b[white_index] = 0
g[white_index] = 0
r[white_index] = 0
Y_max = np.max(RL)
b_gain = Y_max / (np.sum(b) / np.sum(b > 0))
g_gain = Y_max / (np.sum(g) / np.sum(g > 0))
r_gain = Y_max / (np.sum(r) / np.sum(r > 0))
b = b * b_gain
g = g * g_gain
r = r * r_gain
```
最后,代码将三个通道合并,并返回校正后的图像:
```python
res_img = cv2.merge((b, g, r))
return res_img
```
这段代码实现了自动白平衡的功能,通过计算亮度和色度的值,选择合适的白点,并根据选定白点的亮度进行像素增益调整,以达到图像颜色校正的效果。
阅读全文