python 单目测距

时间: 2023-08-27 14:15:28 浏览: 56
单目测距是指利用单个摄像头获取的图像信息来计算物体距离的技术。在Python中,可以使用OpenCV库来实现单目测距。具体的步骤如下: 1.标定相机:通过拍摄多个不同位置的棋盘格图案,得到相机的内参和外参。 2.提取图像中的特征点:使用SIFT、SURF、ORB等算法,提取图像中的特征点。 3.计算相邻帧之间的特征点匹配:通过计算两个图像中的特征点之间的距离和角度,得到相邻帧之间的特征点匹配。 4.计算本质矩阵和基础矩阵:利用相邻帧之间的特征点匹配,计算出本质矩阵和基础矩阵。 5.计算物体距离:根据相机内参、基础矩阵和特征点的坐标,计算物体距离。 需要注意的是,单目测距的精度受到相机参数、标定误差、特征点提取和匹配的准确性等因素的影响,因此需要进行细致的调试和优化。
相关问题

python单目测距

Python单目测距是通过使用YOLOv5或YOLOv7等算法来实现的。YOLOv5和YOLOv7都是一种目标检测算法,可以用于检测物体并计算物体到相机的距离。 在使用YOLOv5或YOLOv7进行单目测距的过程中,需要进行一些相关配置和相机标定。配置包括设置算法参数和调整模型参数等。相机标定是为了获取相机的内参和外参,以便进行距离的测量。 在测距的原理上,主要是利用相似三角形的原理来计算物体到相机的距离。通过测量物体在图像上的像素大小和已知的物体尺寸,可以根据相似三角形的关系计算出物体到相机的距离。 您可以参考相关链接中提供的代码和实验效果来了解更详细的实现过程和具体效果。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [YOLOv5+单目测距(python)](https://blog.csdn.net/qq_45077760/article/details/130261489)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [单目摄像机测距(python+opencv)](https://blog.csdn.net/m0_37811342/article/details/80394935)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

python单目测距代码

单目测距一般使用的是立体视觉技术,需要使用双目摄像头或者深度摄像头进行拍摄。如果只有单个摄像头,需要通过一些算法对图像进行处理,提取出深度信息。以下是一个使用Python和OpenCV库实现的简单单目测距代码: ```python import cv2 import numpy as np # 读取图片 img = cv2.imread('image.jpg') # 转为灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 使用高斯滤波平滑图像 gray = cv2.GaussianBlur(gray, (5, 5), 0) # 边缘检测 edges = cv2.Canny(gray, 50, 150) # 霍夫变换检测直线 lines = cv2.HoughLines(edges, 1, np.pi / 180, 200) # 计算直线与图像边缘的交点 points = [] for line in lines: rho, theta = line[0] a = np.cos(theta) b = np.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + 1000 * (-b)) y1 = int(y0 + 1000 * a) x2 = int(x0 - 1000 * (-b)) y2 = int(y0 - 1000 * a) if x1 != x2: k = (y2 - y1) / (x2 - x1) b = y1 - k * x1 point = (int(-b/k), 0) if point[0] > 0 and point[0] < img.shape[1]: points.append(point) # 计算距离 focal_length = 1000 # 焦距 real_width = 50 # 物体实际宽度 pixel_width = abs(points[0][0] - points[-1][0]) # 物体像素宽度 distance = focal_length * real_width / pixel_width # 显示图像和结果 cv2.line(img, points[0], points[-1], (0, 0, 255), 2) cv2.putText(img, '{:.2f}cm'.format(distance), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段代码首先读取一张图片,然后将其转为灰度图,并使用高斯滤波平滑图像。接着使用边缘检测算法提取出图像的边缘,并使用霍夫变换检测出直线。然后通过计算直线与图像边缘的交点,得到物体的像素宽度。最后通过焦距等参数计算出物体的距离,并在图像上显示出距离信息和检测出的直线。

相关推荐

最新推荐

recommend-type

python距离测量的方法

主要为大家详细介绍了python距离测量的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

防雷及短路计算软件.zip

防雷及短路计算软件
recommend-type

电线穿管选用小软件.zip

电线穿管选用小软件
recommend-type

【小白python数据分析入门4Pandas可视化-板块8案例 2018幸福大数据】

小白python数据分析入门4Pandas可视化——板块8案例 2018幸福大数据,辅助8.1读取数据
recommend-type

电气照明照度计算软件.zip

电气照明照度计算软件
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。