基于pytorch对stml网络优化的代码
时间: 2024-05-14 12:17:39 浏览: 77
以下是一个简单的基于PyTorch实现的LSTM网络优化代码,包括使用GPU加速:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义LSTM网络
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
# 初始化隐藏状态和单元状态
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).cuda()
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).cuda()
# 前向传播,获取LSTM输出
out, _ = self.lstm(x, (h0, c0))
# 取出最后一个时间步的输出作为预测值
out = self.fc(out[:, -1, :])
return out
# 超参数设置
input_size = 28
hidden_size = 128
num_layers = 2
output_size = 10
lr = 0.001
batch_size = 100
num_epochs = 5
# 加载MNIST数据集
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())
# 创建数据加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
# 创建LSTM网络
lstm = LSTM(input_size, hidden_size, num_layers, output_size).cuda()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(lstm.parameters(), lr=lr)
# 训练LSTM网络
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 将数据移到GPU上
images = images.reshape(-1, 28, 28).cuda()
labels = labels.cuda()
# 前向传播,计算损失函数,反向传播,更新参数
optimizer.zero_grad()
outputs = lstm(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 每隔100步输出一次训练结果
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 测试LSTM网络
lstm.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
# 将数据移到GPU上
images = images.reshape(-1, 28, 28).cuda()
labels = labels.cuda()
# 前向传播,计算预测值
outputs = lstm(images)
_, predicted = torch.max(outputs.data, 1)
# 统计正确预测的数量和总数量
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
```
这个代码首先定义了一个LSTM类,包含了LSTM网络的构造函数和前向传播函数。然后设置了超参数,加载了MNIST数据集,并创建了数据加载器。接着创建了LSTM网络,定义了损失函数和优化器。在训练过程中,将数据移到GPU上,并进行前向传播、计算损失函数、反向传播和参数更新。在测试过程中,同样将数据移到GPU上,并进行前向传播和预测值计算,统计正确预测的数量和总数量,输出测试准确率。
阅读全文