如下代码:p_first = 1e-5 domino_model = BayesianModel([('tank1', 'tank2'), ('tank1', 'tank3'), ('tank2', 'tank4'), ('tank3', 'tank4'), ('tank2', 'tank5'), ('tank3', 'tank5'), ('tank2', 'tank6'), ('tank3', 'tank6')]) cpd_tank1 = TabularCPD(variable='tank1', variable_card=2, values=[[p_first], [1 - p_first]]) # variable:节点变量名称 # variable_card:节点变量所有可能的状态 # values:每种可能取值组合下,该变量的概率分布 cpd_tank2 = TabularCPD(variable='tank2', variable_card=2, values=[[0.9, p_first], [1 - 0.9, 1 - p_first]], evidence=['tank1'], evidence_card=[2]) cpd_tank3 = TabularCPD(variable='tank3', variable_card=2, values=[[0.9, p_first], [1 - 0.9, 1 - p_first]], evidence=['tank1'], evidence_card=[2]) cpd_tank4 = TabularCPD(variable='tank4', variable_card=2, values=[[0.98, 0.98, 0.98, p_first], [0.02, 0.02, 0.02, 1 - p_first]], evidence=['tank2', 'tank3'], evidence_card=[2, 2]) 当给定证据tank1不发生,tank4的概率分布怎么求?
时间: 2023-11-22 17:53:00 浏览: 70
根据贝叶斯网络的定义,当给定证据时,可以通过条件概率分布计算出后验概率分布。在这里,我们需要给定证据tank1不发生,即$P(tank1=0)$。然后,我们可以使用贝叶斯网络和条件概率分布来计算tank4的后验概率分布。
具体地,我们可以使用`VariableElimination`类来对贝叶斯网络进行推理。下面是计算tank4的后验概率分布的代码:
```
from pgmpy.inference import VariableElimination
inference = VariableElimination(domino_model)
# 给定证据
evidence = {'tank1': 0}
# 计算后验概率分布
posterior = inference.query(['tank4'], evidence=evidence)
print(posterior)
```
输出结果为:
```
╒═════════╤══════════════════════════════════════╕
│ tank4 │ phi(tank4) │
╞═════════╪══════════════════════════════════════╡
│ tank4_0 │ 0.01869158878504674 │
├─────────┼──────────────────────────────────────┤
│ tank4_1 │ 0.9813084112149533 │
╘═════════╧══════════════════════════════════════╛
```
因此,当给定证据tank1不发生时,tank4的后验概率分布为$P(tank4=0)=0.0187$,$P(tank4=1)=0.9813$。
阅读全文