r语言报错Error in df$srs_layer <- strata(data, stratanames = "stratum", size = c(50, : object of type 'closure' is not subsettable
时间: 2024-03-10 21:48:49 浏览: 111
这个错误通常是因为你在给新加的列赋值时,没有正确指定数据框的名称。请确保你在使用 $ 符号时,左边是数据框的名称,右边是新加的列的名称。另外,如果你使用了函数名作为变量名,也可能会导致这个错误。以下是一个正确的例子:
```
library(sampling)
# 假设你的数据框名为df,其中stratum列为stratum,y列为y
# 将y按照stratum分成四层
srs_result <- strata(df, stratanames = "stratum", size=c(50,50,20,25), method="srswr")
df$srs_layer <- srs_result$IDunit
# 查看每层样本量
table(df$srs_layer)
```
在这个例子中,我们将strata()函数的返回值存储在了一个变量srs_result中,然后使用df$srs_layer将新加的列添加到了df数据框中。这样就可以避免上述错误。
相关问题
不使用survcomp,补充完善以下代码,添加两两之间C-INDEX的对比是否有意义。library(foreign) library(survival) # 1. 导入数据集 my_data <- read.csv(file="D:/5放射诊断/R生存分析/nafld.csv") # 2. 转换分级变量 my_data$CACSgrades <- factor(my_data$CACSgrades) levels(my_data$CACSgrades) <- c("1", "2", "3", "4") my_data$CACSgrades <- relevel(my_data$CACSgrades, ref = "1") my_data$CADRADS <- factor(my_data$CADRADS) levels(my_data$CADRADS) <- c("0","1", "2", "3", "4", "5") my_data$CADRADS <- relevel(my_data$CADRADS, ref = "0") # 3.单因素Cox回归模型拟合 # 定义生存时间和事件结果变量 surv <- with(my_data, Surv(time, MACE==1)) #Cox回归模型拟合,多因素,CACSgrades fit_1 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS, data = my_data) summary(fit_1) fit_2 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS + NAFLD, data = my_data) summary(fit_2) fit_3 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS + PCATgrade, data = my_data) summary(fit_3) fit_4 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS + PCATgrade + NAFLD, data = my_data) summary(fit_4)
# 4. 添加两两之间C-INDEX的对比是否有意义
# 定义一个函数,计算C-INDEX
c_index <- function(model1, model2, data, time, event) {
# 获取模型1和模型2的预测值
pred1 <- predict(model1, newdata = data, type = "lp")
pred2 <- predict(model2, newdata = data, type = "lp")
# 计算C-INDEX
concordance <- survival::concordance.index(time, -pred1, event, weights = NULL,
strata = NULL, robust = FALSE,
cluster = NULL, method = "ipcw",
R = 100, var.type = "C", conf.int = FALSE,
conf.level = 0.95, ties = "efron")$concordance
concordance2 <- survival::concordance.index(time, -pred2, event, weights = NULL,
strata = NULL, robust = FALSE,
cluster = NULL, method = "ipcw",
R = 100, var.type = "C", conf.int = FALSE,
conf.level = 0.95, ties = "efron")$concordance
# 输出结果
if (concordance > concordance2) {
cat("The first model has a higher C-INDEX than the second model: ", concordance - concordance2, "\n")
} else if (concordance < concordance2) {
cat("The second model has a higher C-INDEX than the first model: ", concordance2 - concordance, "\n")
} else {
cat("The two models have the same C-INDEX: ", concordance, "\n")
}
}
# 两两比较模型的C-INDEX
c_index(fit_1, fit_2, my_data, "time", "MACE")
c_index(fit_1, fit_3, my_data, "time", "MACE")
c_index(fit_1, fit_4, my_data, "time", "MACE")
c_index(fit_2, fit_3, my_data, "time", "MACE")
c_index(fit_2, fit_4, my_data, "time", "MACE")
c_index(fit_3, fit_4, my_data, "time", "MACE")
Error in strata(., stratanames = redWine$分组质量, size = c(c, b, a), : the names of the strata are wrong这个R语言报错怎么解决?
这个报错提示是因为在 `stratanames` 参数中指定的分层变量名称与数据集中的变量名称不匹配导致的。
你可以检查一下 `stratanames` 参数中指定的变量名称是否与数据集中的变量名称完全一致,包括大小写和空格等。如果不一致,可以将其修改为正确的变量名称,或者使用数据集中变量的位置来指定分层变量,例如 `stratanames = c(1,2,3)`。
另外,还需要检查一下数据集是否已经按照分层变量进行排序,如果没有排序需要先对数据集进行排序。
希望这些信息能够帮助你解决问题!
阅读全文