The last module in the image preprocessing pipeline extracts a subvolume of the image which contains the GTV . This reduction enables to compute the radiomics features only from the voxels, also reducing the size of the 3D image portion to analyze with DL on the Graphical Processing Unit (GPU) memory. The drawback of this operation is the loss of contextual information near the GTW, thus the normalized size of the subvolume was set to 128 mm3, a reasonable trade-off between the size of the GTVs in the dataset and the amount of context included. The volume of interest was centered in the center of mass of the GTV , also used to center the subvolumes of the CT, PET and GTV mask images. 解释
时间: 2024-02-13 17:28:15 浏览: 95
这段话主要是在介绍医学图像处理中的一个模块,该模块用于提取包含肿瘤区域(GTV)的子体积,并减小图像的尺寸以便能够在显卡内存上进行深度学习分析。这种操作的缺点是在GTV附近会失去一些上下文信息,因此子体积的标准尺寸被设置为128 mm3,这是在GTV数据集的大小和包含的上下文之间做出的一个合理折中。值得一提的是,该子体积是以GTV的重心为中心进行裁剪的,同时也用于对CT、PET和GTV遮罩图像的子体积进行中心对齐。
相关问题
ModuleNotFoundError Traceback (most recent call last) Cell In[1], line 10 8 from tensorflow.keras.preprocessing.image import load_img 9 from importlib import reload ---> 10 import segmenteverygrain as seg 11 from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor 12 from tqdm import trange File ~\segmenteverygrain-main\segmenteverygrain\segmenteverygrain.py:42 39 from tensorflow.keras.optimizers import Adam 40 from tensorflow.keras.preprocessing.image import load_img ---> 42 from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor 44 def predict_image_tile(im_tile,model): 45 if len(np.shape(im_tile)) == 2: File D:\Anaconda\lib\site-packages\segment_anything\__init__.py:14 1 # Copyright (c) Meta Platforms, Inc. and affiliates. 2 # All rights reserved. 3 4 # This source code is licensed under the license found in the 5 # LICENSE file in the root directory of this source tree. 7 from .build_sam import ( 8 build_sam, 9 build_sam_vit_h, (...) 12 sam_model_registry, 13 ) ---> 14 from .predictor import SamPredictor 15 from .automatic_mask_generator import SamAutomaticMaskGenerator File D:\Anaconda\lib\site-packages\segment_anything\predictor.py:14 10 from segment_anything.modeling import Sam 12 from typing import Optional, Tuple ---> 14 from .utils.transforms import ResizeLongestSide 17 class SamPredictor: 18 def __init__( 19 self, 20 sam_model: Sam, 21 ) -> None: File D:\Anaconda\lib\site-packages\segment_anything\utils\transforms.py:10 8 import torch 9 from torch.nn import functional as F ---> 10 from torchvision.transforms.functional import resize, to_pil_image # type: ignore 12 from copy import deepcopy 13 from typing import Tuple ModuleNotFoundError: No module named 'torchvision'
这个错误是由于缺少 `torchvision` 模块引起的。`torchvision` 是 PyTorch 的一个扩展库,提供了一些图像处理和计算机视觉相关的功能,包括图像变换、数据集加载等。
要解决这个问题,您可以尝试通过运行以下命令来安装 `torchvision`:
```
pip install torchvision
```
如果您正在使用 Anaconda 环境,可以运行以下命令:
```
conda install torchvision -c pytorch
```
安装完毕后,重新运行代码,应该就能成功导入 `torchvision` 模块了。
Data preprocessing is a critical procedure in many real world machine learning and AI problem. Using weather forecast as example, various data preprocessing such as data normalization, scaling and labeling are needed before the time-series weather information can be used for network training and testing. Use the time series weather data of Seattle (weather.csv) provided in this workshop as the time-series raw data for data preprocessing: Describe and explain the nature of data in each attribute of the time series records. Discuss what kind of data preprocessing methods are needed for each attribute. How about missing record and incorrect data, how can we fix such problems. Write Python program to implement the data processing method. Hint: The normal range and condition of each weather attribute are: Air Pressure 900 - 1200 Precipitation 0 - 300 Temperature -50 - 50 Max >= Min Temp Wind Speed (Grade) 0 - 10 Wind Direction 0 - 360
每个属性的时间序列记录中的数据性质如下:
1. 空气压力:连续数值数据,范围在900-120之间,需要进行数据标准化和缩放。
2. 降水量:连续数值数据,范围在-300之间,需要进行数据标准化和缩放。
3. 温度:连续数值数据,范围在-50到50之间,需要进行数据标准化和缩放。
4. 最高温度和最低温度:连续数值数据,范围在-50到50之间,需要进行数据标准化和缩放。
5. 风速(等级):离散数值数据,范围在-10之间,需要进行数据标准化和缩放。
6. 风向:连续数值数据,范围在-360之间,需要进行数据标准化和缩放。
对于缺失记录和不正确的数据,我们可以使用插值方法来填充缺失值或者删除不正确的数据。
以下是Python程序实现数据处理方法的示例代码:
```python
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
# 读取数据
data = pd.read_csv('weather.csv')
# 处理空值
data = data.fillna(method='ffill')
# 标准化和缩放
scaler = MinMaxScaler()
data[['Air Pressure', 'Precipitation', 'Temperature', 'Max Temperature', 'Min Temperature', 'Wind Speed (mph)', 'Wind Direction (degrees)']] = scaler.fit_transform(data[['Air Pressure', 'Precipitation', 'Temperature', 'Max Temperature', 'Min Temperature', 'Wind Speed (mph)', 'Wind Direction (degrees)']])
# 输出处理后的数据
print(data)
```
阅读全文