用c++写判断一个范围内的素数并求和
时间: 2023-05-23 13:00:56 浏览: 101
可以使用C++实现一个判断素数并求和的程序,代码如下:
```cpp
#include <iostream>
using namespace std;
bool isPrime(int n) {
if (n < 2) return false; // 小于2的数都不是素数
for (int i = 2; i * i <= n; ++i) {
if (n % i == 0) return false; // 如果有因子,则不是素数
}
return true;
}
int primeSum(int low, int high) {
int sum = 0;
for (int i = low; i <= high; ++i) {
if (isPrime(i)) sum += i; // 如果是素数,则累加到sum中
}
return sum;
}
int main() {
int low = 100, high = 200;
int sum = primeSum(low, high);
cout << "Range [" << low << ", " << high << "] Sum of prime numbers: " << sum << endl;
return 0;
}
```
这个程序可以计算指定范围内的素数和。
相关问题
c++从键盘输入m和n,求m到n范围内个位数为3或7的素数,进行如下操作:①输出所有素数并求和②对所有满足条件,且十位数不为6的素数求和(用continue)
在C++中,你可以使用以下步骤来实现这个功能:
首先,我们需要编写一个函数来判断一个数是否为素数。然后,我们获取用户输入的m和n,遍历这个范围内的每个数,检查其个位数是否为3或7,并且如果是素数。对于素数,我们将其添加到总和中。如果某个数符合条件,但十位数是6,则跳过它(使用`continue`语句)。最后,我们会输出所有的素数及其总和以及符合条件但十位非6的素数的和。
```cpp
#include <iostream>
using namespace std;
// 判断是否为素数的辅助函数
bool isPrime(int num) {
if (num <= 1)
return false;
for (int i = 2; i * i <= num; ++i) {
if (num % i == 0)
return false;
}
return true;
}
int main() {
int m, n;
cout << "请输入起始值m:";
cin >> m;
cout << "请输入结束值n:";
cin >> n;
int sumAllPrimes = 0;
int sumSpecialPrimes = 0;
for (int i = m; i <= n; ++i) {
if (i % 10 == 3 || i % 10 == 7 && isPrime(i)) {
cout << i << " ";
sumAllPrimes += i;
// 如果十位不是6,累加sumSpecialPrimes
if (i / 10 != 6) {
sumSpecialPrimes += i;
}
} else if (i % 10 == 3 || i % 10 == 7) {
// 跳过十位为6的数
continue;
}
}
cout << endl;
cout << "所有素数的和为:" << sumAllPrimes << endl;
cout << "满足条件且十位非6的素数的和为:" << sumSpecialPrimes << endl;
return 0;
}
```
如何使用C++编程计算并求和[2, 50]范围内的所有和谐素数?
和谐素数是指除了1以外,同时能够整除其倒数的自然数。在C++编程中,我们可以按照以下步骤计算并求和[2, 50]范围内的和谐素数:
1. 定义一个函数检查一个数是否为和谐素数。首先,对于给定的数n,我们需要验证它是否是质数,因为只有质数才能成为和谐素数。可以使用Sieve of Eratosthenes算法来生成一定范围内的质数。
```cpp
#include <vector>
bool isHarmonious(int n) {
std::vector<bool> prime(n + 1, true);
for (int i = 2; i * i <= n; ++i) {
if (prime[i]) {
for (int j = i * i; j <= n; j += i)
prime[j] = false;
}
}
return prime[n] && (isPrime(n) || isDivisibleByOneOverN(n));
}
// 辅助函数,判断n是否能被1/n整除
bool isDivisibleByOneOverN(int n) {
int reciprocal = static_cast<int>(std::ceil(1.0 / n));
return n % reciprocal == 0;
}
```
2. 遍历[2, 50]范围内的每个数,如果它是质数并且满足和谐素数的条件(即能被它的倒数整除),就将其加入到结果总和中。
```cpp
int sumOfHarmoniousPrimes() {
int sum = 0;
for (int i = 2; i <= 50; ++i) {
if (isHarmonious(i))
sum += i;
}
return sum;
}
```
3. 最后,在main函数中调用`sumOfHarmoniousPrimes()`函数并打印结果。
```cpp
int main() {
int result = sumOfHarmoniousPrimes();
std::cout << "The sum of harmonious primes between 2 and 50 is: " << result << std::endl;
return 0;
}
```
阅读全文