心电图式梯度下降算法代码
时间: 2023-07-05 16:32:21 浏览: 163
以下是心电图式梯度下降算法的伪代码:
1. 初始化参数w和b
2. while (not converged):
3. 计算损失函数J(w,b)
4. 计算梯度dw和db
5. 更新参数w和b: w = w - learning_rate * dw, b = b - learning_rate * db
6. if (损失函数J(w,b)已经收敛):
7. converged = True
以下是使用Python实现的心电图式梯度下降算法代码:
```python
import numpy as np
def sigmoid(z):
return 1 / (1 + np.exp(-z))
def initialize_params(dim):
w = np.zeros((dim, 1))
b = 0
return w, b
def propagate(w, b, X, Y):
m = X.shape[1]
A = sigmoid(np.dot(w.T, X) + b)
cost = (-1/m) * np.sum(Y * np.log(A) + (1-Y) * np.log(1-A))
dw = (1/m) * np.dot(X, (A-Y).T)
db = (1/m) * np.sum(A-Y)
grads = {"dw": dw, "db": db}
return grads, cost
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost=False):
costs = []
for i in range(num_iterations):
grads, cost = propagate(w, b, X, Y)
dw = grads["dw"]
db = grads["db"]
w = w - learning_rate * dw
b = b - learning_rate * db
if i % 100 == 0:
costs.append(cost)
if print_cost and i % 100 == 0:
print("迭代次数 %i: 损失函数值为 %f" % (i, cost))
params = {"w": w, "b": b}
grads = {"dw": dw, "db": db}
return params, grads, costs
def predict(w, b, X):
m = X.shape[1]
Y_prediction = np.zeros((1, m))
w = w.reshape(X.shape[0], 1)
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
if A[0,i] > 0.5:
Y_prediction[0,i] = 1
else:
Y_prediction[0,i] = 0
return Y_prediction
def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False):
w, b = initialize_params(X_train.shape[0])
parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
w = parameters["w"]
b = parameters["b"]
Y_prediction_train = predict(w, b, X_train)
Y_prediction_test = predict(w, b, X_test)
train_accuracy = 100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100
test_accuracy = 100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100
print("训练集准确率: " + str(train_accuracy) + "%")
print("测试集准确率: " + str(test_accuracy) + "%")
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d
```
这是一个二分类的逻辑回归模型,可以用于处理心电图数据。其中,sigmoid函数用于将输入值转换为概率值,在propagate函数中计算损失函数和梯度,在optimize函数中使用梯度下降算法更新参数,在predict函数中预测输出值,在model函数中调用前面的函数并输出准确率和其他信息。
阅读全文