cbam代码pytorch
时间: 2023-07-09 10:48:07 浏览: 121
以下是使用PyTorch实现的CBAM模块的代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
self.relu1 = nn.ReLU()
self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class CBAM(nn.Module):
def __init__(self, in_planes, ratio=16, kernel_size=7):
super(CBAM, self).__init__()
self.channel_gate = ChannelAttention(in_planes, ratio)
self.spatial_gate = SpatialAttention(kernel_size)
def forward(self, x):
x = x * self.channel_gate(x)
x = x * self.spatial_gate(x)
return x
```
该代码定义了三个模块:通道注意力模块(ChannelAttention)、空间注意力模块(SpatialAttention)和CBAM模块。通道注意力模块使用全局平均池化和全局最大池化来学习通道间的相互依赖关系,空间注意力模块使用可分离卷积来学习特征之间的相互依赖关系。CBAM模块将这两个模块结合起来,来增强特征的表示能力。
阅读全文