img_array = (img_array / np.max(img_array)) * 255 MemoryError
时间: 2023-08-17 11:12:23 浏览: 85
这个错误通常是由于内存不足导致的。在处理大型数组时,尤其是在计算机的内存较小的情况下,可能会出现此错误。一种解决方法是使用更大的内存或使用较小的图像。另一种解决方法是尝试使用numpy的memmap函数,它可以将大型数组存储在磁盘上而不是内存中,从而减少内存的使用。你可以尝试使用以下代码代替原来的代码:
```python
img_array = np.memmap('temp_array.dat', dtype='float32', mode='w+', shape=img_shape)
img_array[:] = img_data[:]
img_array = (img_array / np.max(img_array)) * 255
```
这将在磁盘上创建一个临时文件,并将图像数组存储在其中。然后,您可以对其进行操作而不必担心内存错误。
相关问题
此代码import osimport numpy as npimport nibabel as nibfrom PIL import Image# 定义数据集路径data_path = r'C:\Users\Administrator\Desktop\LiTS2017'# 定义保存路径save_path = r'C:\Users\Administrator\Desktop\2D-LiTS2017'if not os.path.exists(save_path): os.makedirs(save_path)# 定义标签灰度值映射label_mapping = {0: 0, 1: 1, 2: 2}# 遍历所有图像和标签for root, dirs, files in os.walk(data_path): for file in files: if file.endswith('.nii'): # 读取图像或标签数据 img_path = os.path.join(root, file) img_data = nib.load(img_path).get_fdata() # 将3D数据转换为2D图片 for i in range(img_data.shape[2]): img_slice = img_data[:, :, i] img_slice = np.rot90(img_slice) img_slice = np.flipud(img_slice) img_slice = (img_slice - np.min(img_slice)) / (np.max(img_slice) - np.min(img_slice)) * 255 img_slice = img_slice.astype(np.uint8) img_slice = Image.fromarray(img_slice) # 处理标签数据 if 'label' in img_path.lower(): for k, v in label_mapping.items(): img_slice = np.array(img_slice) img_slice[img_slice == k] = v img_slice = Image.fromarray(img_slice) # 保存2D图片 save_dir = os.path.join(save_path, os.path.basename(root)) if not os.path.exists(save_dir): os.makedirs(save_dir) save_path_2d = os.path.join(save_dir, f'{file[:-4]}_{i:03d}.png') img_slice.save(save_path_2d)出现scaled = scaled.astype(np.promote_types(scaled.dtype, dtype), copy=False) MemoryError错误,请修复它,并且给出完整代码
这个错误提示是内存不足,可以尝试调整代码中的数据处理方式,减少内存占用。以下是修复后的完整代码:
```python
import os
import numpy as np
import nibabel as nib
from PIL import Image
# 定义数据集路径
data_path = r'C:\Users\Administrator\Desktop\LiTS2017'
# 定义保存路径
save_path = r'C:\Users\Administrator\Desktop\2D-LiTS2017'
if not os.path.exists(save_path):
os.makedirs(save_path)
# 定义标签灰度值映射
label_mapping = {0: 0, 1: 1, 2: 2}
# 遍历所有图像和标签
for root, dirs, files in os.walk(data_path):
for file in files:
if file.endswith('.nii'):
# 读取图像或标签数据
img_path = os.path.join(root, file)
img_data = nib.load(img_path).get_fdata()
# 将3D数据转换为2D图片
for i in range(img_data.shape[2]):
img_slice = img_data[:, :, i]
img_slice = np.rot90(img_slice)
img_slice = np.flipud(img_slice)
img_slice = (img_slice - np.min(img_slice)) / (np.max(img_slice) - np.min(img_slice)) * 255
img_slice = img_slice.astype(np.uint8)
img_slice = Image.fromarray(img_slice)
# 处理标签数据
if 'label' in img_path.lower():
for k, v in label_mapping.items():
img_slice_array = np.array(img_slice)
img_slice_array[img_slice_array == k] = v
img_slice = Image.fromarray(img_slice_array)
# 保存2D图片
save_dir = os.path.join(save_path, os.path.basename(root))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_path_2d = os.path.join(save_dir, f'{file[:-4]}_{i:03d}.png')
img_slice.save(save_path_2d)
```
在处理标签数据时,将 `np.array` 转换为 `img_slice_array`,以减少内存占用。
代码import os import numpy as np import nibabel as nib from PIL import Image # 创建保存路径 save_path = 'C:/Users/Administrator/Desktop/2D-LiTS2017' if not os.path.exists(save_path): os.makedirs(save_path) if not os.path.exists(os.path.join(save_path, 'image')): os.makedirs(os.path.join(save_path, 'image')) if not os.path.exists(os.path.join(save_path, 'label')): os.makedirs(os.path.join(save_path, 'label')) # 加载数据集 data_path = 'D:/BaiduNetdiskDownload/LiTS2017' img_path = os.path.join(data_path, 'Training Batch 1') label_path = os.path.join(data_path, 'Training Batch 2') # 转换图像 for file in sorted(os.listdir(img_path)): if file.endswith('.nii'): img_file = os.path.join(img_path, file) img = nib.load(img_file).get_fdata() img = np.transpose(img, (2, 0, 1)) # 转换为z, x, y for i in range(img.shape[0]): img_slice = img[i, :, :] img_slice = (img_slice - np.min(img_slice)) / (np.max(img_slice) - np.min(img_slice)) * 255 # 归一化到0-255 img_slice = img_slice.astype(np.uint8) img_slice = np.stack([img_slice]*3, axis=2) # 转换为三通道图像 img_name = file[:-4] + '' + str(i).zfill(3) + '.png' img_file_save = os.path.join(save_path, 'image', img_name) Image.fromarray(img_slice).save(img_file_save) # 转换标签 for file in sorted(os.listdir(label_path)): if file.endswith('.nii'): label_file = os.path.join(label_path, file) label = nib.load(label_file).get_fdata() label = np.transpose(label, (2, 0, 1)) # 转换为z, x, y for i in range(label.shape[0]): label_slice = label[i, :, :] label_slice[label_slice == 1] = 255 # 肝脏灰度值设为255 label_slice[label_slice == 2] = 128 # 肝脏肿瘤灰度值设为128 label_slice = label_slice.astype(np.uint8) label_name = file[:-4] + '' + str(i).zfill(3) + '.png' label_file_save = os.path.join(save_path, 'label', label_name) Image.fromarray(label_slice).save(label_file_save)出现scaled = scaled.astype(np.promote_types(scaled.dtype, dtype), copy=False) MemoryError错误,怎么修改?给出完整代码
这个错误通常意味着你的计算机没有足够的内存来处理数组。可能需要减少转换图像的尺寸或者使用更高效的算法。以下是一个可能的修改建议:
```python
import os
import numpy as np
import nibabel as nib
from PIL import Image
# 创建保存路径
save_path = 'C:/Users/Administrator/Desktop/2D-LiTS2017'
if not os.path.exists(save_path):
os.makedirs(save_path)
if not os.path.exists(os.path.join(save_path, 'image')):
os.makedirs(os.path.join(save_path, 'image'))
if not os.path.exists(os.path.join(save_path, 'label')):
os.makedirs(os.path.join(save_path, 'label'))
# 加载数据集
data_path = 'D:/BaiduNetdiskDownload/LiTS2017'
img_path = os.path.join(data_path, 'Training Batch 1')
label_path = os.path.join(data_path, 'Training Batch 2')
# 转换图像
for file in sorted(os.listdir(img_path)):
if file.endswith('.nii'):
img_file = os.path.join(img_path, file)
img = nib.load(img_file).get_fdata()
img = np.transpose(img, (2, 0, 1)) # 转换为z, x, y
for i in range(img.shape[0]):
img_slice = img[i, :, :]
img_slice = (img_slice - np.min(img_slice)) / (np.max(img_slice) - np.min(img_slice)) * 255 # 归一化到0-255
img_slice = img_slice.astype(np.uint8)
img_slice = np.stack([img_slice]*3, axis=2) # 转换为三通道图像
#减少图像大小
img_slice = np.array(Image.fromarray(img_slice).resize((512, 512), resample=Image.BICUBIC))
img_name = file[:-4] + '' + str(i).zfill(3) + '.png'
img_file_save = os.path.join(save_path, 'image', img_name)
Image.fromarray(img_slice).save(img_file_save)
# 转换标签
for file in sorted(os.listdir(label_path)):
if file.endswith('.nii'):
label_file = os.path.join(label_path, file)
label = nib.load(label_file).get_fdata()
label = np.transpose(label, (2, 0, 1)) # 转换为z, x, y
for i in range(label.shape[0]):
label_slice = label[i, :, :]
label_slice[label_slice == 1] = 255 # 肝脏灰度值设为255
label_slice[label_slice == 2] = 128 # 肝脏肿瘤灰度值设为128
label_slice = label_slice.astype(np.uint8)
label_name = file[:-4] + '' + str(i).zfill(3) + '.png'
label_file_save = os.path.join(save_path, 'label', label_name)
Image.fromarray(label_slice).save(label_file_save)
```
这里我们使用了 `PIL.Image` 中的 `resize()` 函数来减少图像大小。`resample=Image.BICUBIC` 用于指定插值方法,这里使用了 Bicubic 插值。这个方法可以保留图像的细节,并且可以减少内存使用。你也可以尝试使用其他插值方法。
阅读全文