Python中wfdb.rdsamp()函数
时间: 2023-05-23 18:05:34 浏览: 128
的作用是什么?
A:Python中wfdb.rdsamp()函数是一个用于读取PhysioNet数据库格式信号文件的函数。该函数可以将数据文件读取为Numpy数组,并返回包含信号数据的二维Numpy数组和元数据的字典。这个函数通常用于医学信号处理和生物医学工程领域,可以帮助分析和处理生理信号数据。
相关问题
wfdb.rdsamp
`wfdb.rdsamp`是一个Python函数,它是WFDB软件包(PhysioNet中的开源软件包)中的一部分。它被用来读取和解析WFDB格式的生理信号数据,并将其转换为Python中的NumPy数组格式。该函数需要两个参数:记录名称和记录路径。例如,以下代码将读取名为`100`的记录,该记录位于`./data/`目录中:
```
import wfdb
record_name = '100'
record_path = './data/'
signals, fields = wfdb.rdsamp(record_name, pbdir=record_path)
```
其中`signals`是包含生理信号数据的NumPy数组,`fields`是一个字典,包含记录的元数据。
import wfdb import numpy as np import os import cv2 from PIL import Image import matplotlib.pyplot as plt # 设置数据集路径 data_path = 'mit-bih-arrhythmia-database-1.0.0/' # 设置输出路径 output_path = 'ImageMITBIH/' N_beats_pos = [] A_beats_pos = [] V_beats_pos = [] F_beats_pos = [] L_beats_pos = [] R_beats_pos = [] qita_beats_pos = [] # 读取数据集中所有记录的文件名 records = wfdb.get_record_list('mitdb') print('file list =', records) # 循环遍历每个记录文件 for record in records: print('\n') print('Processing record:', record) # 读取记录文件中的信号和标注信息 all_signals, fields = wfdb.rdsamp(os.path.join(data_path, record)) signals = [x[0] for x in all_signals] annotations = wfdb.rdann(os.path.join(data_path, record), 'atr') print('signals =', signals) print('signals_amount =', len(signals)) print('fields =', fields) print('annotations =', annotations) # 获取每个心拍的位置和类别 beats_pos = annotations.sample beats_labels = annotations.symbol print('beats_pos =', beats_pos) print('pos_amount =', len(beats_pos)) print('beats_labels =', beats_labels) print('labels_amount =', len(beats_labels)) print('labels_forms =', list(set(beats_labels))) for i in range(len(beats_labels)): if beats_labels[i] == 'N': # 正常心拍 N_beats_pos.append(beats_pos[i]) if beats_labels[i] == 'A': # 房性早搏 A_beats_pos.append(beats_pos[i]) if beats_labels[i] == 'V': # 室性早搏 V_beats_pos.append(beats_pos[i]) if beats_labels[i] == 'F': # 室性融合波 F_beats_pos.append(beats_pos[i]) if beats_labels[i] == 'L': # 左束传导受阻 L_beats_pos.append(beats_pos[i]) if beats_labels[i] == 'R': # 右束传导受阻 R_beats_pos.append(beats_pos[i]) else: # 其他异常心拍或无效信号 qita_beats_pos.append(beats_pos[i])逐句翻译一下
这是一个 Python 代码,用于处理心电图数据集。代码分为三个部分:
第一部分,设置数据集路径和输出路径,导入所需的库。
第二部分,循环遍历每个记录文件,读取信号和标注信息,获取每个心拍的位置和类别,并将其分别存储在对应的列表中。
第三部分,将不同类别的心拍位置存储在不同的列表中,最后保存到输出路径下。
具体解释如下:
- 导入 wfdb、numpy、os、cv2 和 PIL 库,以及 matplotlib.pyplot 库中的 plt 模块。
- 设置数据集路径为 'mit-bih-arrhythmia-database-1.0.0/',输出路径为 'ImageMITBIH/'。
- 使用 wfdb 库中的 get_record_list() 函数获取数据集中所有记录的文件名列表。
- 循环遍历每个记录文件名,使用 wfdb 库中的 rdsamp() 函数读取信号和字段信息,使用 rdann() 函数读取标注信息。
- 获取每个心拍的位置和类别,分别存储在 beats_pos 和 beats_labels 列表中。
- 根据心拍类别将心拍位置存储在对应的列表中。
- 最后将不同类别的心拍位置列表保存到输出路径下的相应文件中。
阅读全文