for index,img in enumerate(test_img): image = Image.open(img) image = image.resize([208, 208]) image_array = np.array(image) with tf.Graph().as_default(): BATCH_SIZE = 1 N_CLASSES = 4 image = tf.cast(image_array, tf.float32) image = tf.image.per_image_standardization(image) image = tf.reshape(image, [1, 208, 208, 3]) logit = model.cnn_inference(image, BATCH_SIZE, N_CLASSES) logit = tf.nn.softmax(logit) 这里将BATCH_SIZE = 1 改为BATCH_SIZE = 16还需要修改什么
时间: 2024-02-14 19:24:46 浏览: 108
如果您将 `BATCH_SIZE` 从 1 修改为 16,那么您还需要相应地修改以下几个地方:
1. 修改 `tf.reshape()` 的参数:将 `[1, 208, 208, 3]` 修改为 `[16, 208, 208, 3]`,以匹配新的 `BATCH_SIZE`。
2. 修改 `model.cnn_inference()` 的参数:将 `BATCH_SIZE` 修改为 16,以确保模型推理时处理正确的批量大小。
3. 修改 `test_img` 的列表长度:确保 `test_img` 列表中有足够的图像路径,使其长度为 16,以便与新的 `BATCH_SIZE` 匹配。
修改后的代码示例:
```python
import tensorflow as tf
from PIL import Image
import numpy as np
# Assuming test_img is a list of image paths
BATCH_SIZE = 16
N_CLASSES = 4
for index, img in enumerate(test_img):
image = Image.open(img)
image = image.resize([208,***
相关问题
for index,img in enumerate(test_img): image = Image.open(img) # 打开img_dir路径下的图片 image = image.resize([208, 208]) # 改变图片的大小,定为宽高都为208像素 image_array = np.array(image) # 转成多维数组,向量的格式 file=os.listdir(img) 这段有什么问题
这段代码中,`os.listdir(img)` 的参数应该是一个目录的路径,而不是一个具体图片文件的路径。因为 `os.listdir()` 函数要求传入的参数是一个目录的路径,它会返回该目录下所有文件和子目录的名称列表。所以,如果你想遍历一个目录下的所有图片文件,可以使用 `os.listdir()` 获取该目录下的所有文件名列表,然后再对每个文件名进行判断,只处理图片文件。例如:
```python
import os
from PIL import Image
import numpy as np
img_dir = "/path/to/your/image/directory"
image_files = [os.path.join(img_dir, f) for f in os.listdir(img_dir) if f.endswith('.jpg') or f.endswith('.png')]
for index, img_file in enumerate(image_files):
image = Image.open(img_file)
image = image.resize([208, 208])
image_array = np.array(image)
```
这样就可以遍历 `img_dir` 目录下所有的 `.jpg` 和 `.png` 图片文件了。
import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from PIL import Image import matplotlib.pyplot as plt import input_data import model import numpy as np import xlsxwriter num_threads = 4 def evaluate_one_image(): test_dir = 'data/test/' import glob import xlwt test_img = glob.glob(test_dir + '*.jpg') workbook = xlsxwriter.Workbook('formatting.xlsx') worksheet = workbook.add_worksheet('My Worksheet') for index,img in enumerate(test_img): image = Image.open(img) image = image.resize([208, 208]) image_array = np.array(image) with tf.Graph().as_default(): BATCH_SIZE = 1 N_CLASSES = 4 image = tf.cast(image_array, tf.float32) image = tf.image.per_image_standardization(image) image = tf.reshape(image, [1, 208, 208, 3]) logit = model.cnn_inference(image, BATCH_SIZE, N_CLASSES) logit = tf.nn.softmax(logit) x = tf.placeholder(tf.float32, shape=[208, 208, 3]) logs_train_dir = 'log/' saver = tf.train.Saver() with tf.Session() as sess: prediction = sess.run(logit, feed_dict={x: image_array}) max_index = np.argmax(prediction) workbook.close() if __name__ == '__main__': evaluate_one_image()改为多线程运算
要将代码改为多线程运算,您可以使用 TensorFlow 的 `tf.train.Coordinator()` 和 `tf.train.start_queue_runners()` 来管理和启动多个线程。以下是修改后的代码示例:
```python
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
from PIL import Image
import matplotlib.pyplot as plt
import input_data
import model
import numpy as np
import xlsxwriter
num_threads = 4
def evaluate_one_image(image_array, index):
with tf.Graph().as_default():
BATCH_SIZE = 1
N_CLASSES = 4
image = tf.cast(image_array, tf.float32)
image = tf.image.per_image_standardization(image)
image = tf.reshape(image, [1, 208, 208, 3])
logit = model.cnn_inference(image, BATCH_SIZE, N_CLASSES)
logit = tf.nn.softmax(logit)
x = tf.placeholder(tf.float32, shape=[208, 208, 3])
logs_train_dir = 'log/'
saver = tf.train.Saver()
with tf.Session() as sess:
prediction = sess.run(logit, feed_dict={x: image_array})
max_index = np.argmax(prediction)
# 将结果写入 Excel 表格
workbook = xlsxwriter.Workbook('formatting.xlsx')
worksheet = workbook.add_worksheet('My Worksheet')
worksheet.write(index, 0, max_index)
workbook.close()
def evaluate_images(test_img):
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for index, img in enumerate(test_img):
image = Image.open(img)
image = image.resize([208, 208])
image_array = np.array(image)
# 在每个线程中调用 evaluate_one_image()
tf.compat.v1.threading.Thread(target=evaluate_one_image, args=(image_array, index)).start()
# 请求停止所有线程
coord.request_stop()
# 等待所有线程完成
coord.join(threads)
if __name__ == '__main__':
test_dir = 'data/test/'
import glob
import xlwt
test_img = glob.glob(test_dir + '*.jpg')
evaluate_images(test_img)
```
在修改后的代码中,我们首先定义了一个新的函数 `evaluate_one_image()`,它接受图像数组和索引作为参数,表示要评估的单个图像。在这个函数中,我们将使用传递的图像数组进行评估操作。
然后,在 `evaluate_images()` 函数中,我们使用 `tf.train.Coordinator()` 和 `tf.train.start_queue_runners()` 启动了多个线程。在每个线程中,我们使用 `tf.compat.v1.threading.Thread()` 创建一个新的线程,并在其中调用 `evaluate_one_image()` 函数来评估图像。
最后,在主函数中通过调用 `evaluate_images()` 函数来启动评估过程。
这样,您就可以利用多线程同时评估多个图像了。
希望对您有帮助!如果您还有其他问题,请随时提问。
阅读全文