python编程4个函数。dataset函数中写两个加载数据集的类。一个用于加载训练集和验证集,对coco数据集的单张自然图像进行预处理,返回tensor形式的自然图像。另一个用于加载测试集,对TNO数据集的红外与可见光图像进行预处理,返回tensor形式红外与可见光图像。net函数中构建出此融合方法的网络,在初始化函数中定义各种神经网络操作,并编写encoder、fusion和decoder函数,分别表示编码器、融合策略和解码器。train函数需要实例化训练网络、dataset和dataloader,设置优化器与训练轮数等参数。在训练中对训练集进行多轮训练,每轮训练结束后对验证集进行验证,记录每轮的平均训练损失和平均验证损失,并将模型保存到pth文件夹中。test函数需要实例化测试集、加载模型参数,融合测试集中的红外与可见光图像,并保存到result文件夹中。

时间: 2023-07-15 12:14:34 浏览: 93
PDF

简单了解Python中的几种函数

很高兴为您提供代码示例: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import transforms from torch.utils.data import Dataset, DataLoader # 定义加载数据集的类 class COCODataset(Dataset): def __init__(self, data_dir, transform=None): self.data_dir = data_dir self.transform = transform def __len__(self): return len(os.listdir(self.data_dir)) def __getitem__(self, idx): img_path = os.path.join(self.data_dir, f"{idx}.jpg") img = Image.open(img_path).convert("RGB") if self.transform: img = self.transform(img) return img class TNODataset(Dataset): def __init__(self, data_dir, transform=None): self.data_dir = data_dir self.transform = transform def __len__(self): return len(os.listdir(self.data_dir)) def __getitem__(self, idx): ir_path = os.path.join(self.data_dir, f"{idx}_ir.jpg") vis_path = os.path.join(self.data_dir, f"{idx}_vis.jpg") ir_img = Image.open(ir_path).convert("RGB") vis_img = Image.open(vis_path).convert("RGB") if self.transform: ir_img = self.transform(ir_img) vis_img = self.transform(vis_img) return ir_img, vis_img # 定义网络结构 class FusionNet(nn.Module): def __init__(self): super(FusionNet, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), ) self.fusion = nn.Sequential( nn.Conv2d(1024, 512, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), ) self.decoder = nn.Sequential( nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.ConvTranspose2d(32, 3, kernel_size=4, stride=2, padding=1), nn.Tanh(), ) def forward(self, ir, vis): ir_enc = self.encoder(ir) vis_enc = self.encoder(vis) enc = torch.cat((ir_enc, vis_enc), dim=1) fusion = self.fusion(enc) dec = self.decoder(fusion) return dec # 定义训练函数 def train(model, train_loader, val_loader, criterion, optimizer, num_epochs, device): best_loss = float('inf') for epoch in range(num_epochs): train_loss = 0.0 val_loss = 0.0 model.train() # 将模型设为训练模式 for i, data in enumerate(train_loader): ir, vis = data ir = ir.to(device) vis = vis.to(device) optimizer.zero_grad() outputs = model(ir, vis) loss = criterion(outputs, ir) loss.backward() optimizer.step() train_loss += loss.item() model.eval() # 将模型设为验证模式 with torch.no_grad(): for i, data in enumerate(val_loader): ir, vis = data ir = ir.to(device) vis = vis.to(device) outputs = model(ir, vis) loss = criterion(outputs, ir) val_loss += loss.item() train_loss /= len(train_loader) val_loss /= len(val_loader) print(f"Epoch {epoch+1} - Train Loss: {train_loss:.4f} - Val Loss: {val_loss:.4f}") if val_loss < best_loss: best_loss = val_loss torch.save(model.state_dict(), "pth/model.pth") # 定义测试函数 def test(model, test_loader, device): model.load_state_dict(torch.load("pth/model.pth")) model.eval() # 将模型设为测试模式 with torch.no_grad(): for i, data in enumerate(test_loader): ir, vis = data ir = ir.to(device) vis = vis.to(device) outputs = model(ir, vis) img = torch.cat((ir, vis, outputs), dim=0) img = transforms.ToPILImage()(img.cpu()) img.save(f"result/{i}.jpg") # 数据预处理 transform_train = transforms.Compose([ transforms.Resize((256, 256)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) transform_test = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # 实例化数据集和数据加载器 train_val_dataset = COCODataset("data/train_val", transform_train) test_dataset = TNODataset("data/test", transform_test) train_dataset, val_dataset = torch.utils.data.random_split(train_val_dataset, [80000, 20000]) train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False) test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False) # 实例化模型和优化器 model = FusionNet().to(device) criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 train(model, train_loader, val_loader, criterion, optimizer, num_epochs=10, device=device) # 测试模型 test(model, test_loader, device=device) ```
阅读全文

相关推荐

dataset = CocoDetection(root=r'D:\file\study\data\COCO2017\train2017', annFile=r'D:\file\study\data\COCO2017\annotations\instances_train2017.json', transforms=transforms.Compose([transforms.ToTensor()])) # 定义训练集和测试集的比例 train_ratio = 0.8 test_ratio = 0.2 # 计算训练集和测试集的数据数量 num_data = len(dataset) num_train_data = int(num_data * train_ratio) num_test_data = num_data - num_train_data # 使用random_split函数将数据集划分为训练集和测试集 train_dataset, test_dataset = random_split(dataset, [num_train_data, num_test_data]) # 打印训练集和测试集的数据数量 print(f"Number of training data: {len(train_dataset)}") print(f"Number of test data: {len(test_dataset)}") train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=0) test_loader = DataLoader(test_dataset, batch_size=8, shuffle=True, num_workers=0) # define the optimizer and the learning rate scheduler params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1) # train the model for 10 epochs num_epochs = 10 for epoch in range(num_epochs): # 将模型设置为训练模式 model.train() # 初始化训练损失的累计值 train_loss = 0.0 # 构建一个迭代器,用于遍历数据集 for i, images, targets in train_loader: print(images) print(targets) # 将数据转移到设备上 images = list(image.to(device) for image in images) targets = [{k: v.to(device) for k, v in t.items()} for t in targets]上述代码报错:TypeError: call() takes 2 positional arguments but 3 were given

最新推荐

recommend-type

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页
recommend-type

PyMySQL-1.1.0rc1.tar.gz

PyMySQL-1.1.0rc1.tar.gz
recommend-type

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip
recommend-type

docker构建php开发环境

docker构建php开发环境
recommend-type

VB程序实例59_系统信息_显示分辨率.zip

VB程序实例,可供参考学习使用,希望对你有所帮助
recommend-type

StarModAPI: StarMade 模组开发的Java API工具包

资源摘要信息:"StarModAPI: StarMade 模组 API是一个用于开发StarMade游戏模组的编程接口。StarMade是一款开放世界的太空建造游戏,玩家可以在游戏中自由探索、建造和战斗。该API为开发者提供了扩展和修改游戏机制的能力,使得他们能够创建自定义的游戏内容,例如新的星球类型、船只、武器以及各种游戏事件。 此API是基于Java语言开发的,因此开发者需要具备一定的Java编程基础。同时,由于文档中提到的先决条件是'8',这很可能指的是Java的版本要求,意味着开发者需要安装和配置Java 8或更高版本的开发环境。 API的使用通常需要遵循特定的许可协议,文档中提到的'在许可下获得'可能是指开发者需要遵守特定的授权协议才能合法地使用StarModAPI来创建模组。这些协议通常会规定如何分发和使用API以及由此产生的模组。 文件名称列表中的"StarModAPI-master"暗示这是一个包含了API所有源代码和文档的主版本控制仓库。在这个仓库中,开发者可以找到所有的API接口定义、示例代码、开发指南以及可能的API变更日志。'Master'通常指的是一条分支的名称,意味着该分支是项目的主要开发线,包含了最新的代码和更新。 开发者在使用StarModAPI时应该首先下载并解压文件,然后通过阅读文档和示例代码来了解如何集成和使用API。在编程实践中,开发者需要关注API的版本兼容性问题,确保自己编写的模组能够与StarMade游戏的当前版本兼容。此外,为了保证模组的质量,开发者应当进行充分的测试,包括单人游戏测试以及多人游戏环境下的测试,以确保模组在不同的使用场景下都能够稳定运行。 最后,由于StarModAPI是针对特定游戏的模组开发工具,开发者在创建模组时还需要熟悉StarMade游戏的内部机制和相关扩展机制。这通常涉及到游戏内部数据结构的理解、游戏逻辑的编程以及用户界面的定制等方面。通过深入学习和实践,开发者可以利用StarModAPI创建出丰富多样的游戏内容,为StarMade社区贡献自己的力量。" 由于题目要求必须输出大于1000字的内容,上述内容已经满足此要求。如果需要更加详细的信息或者有其他特定要求,请提供进一步的说明。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据清洗术:Poisson分布下的异常值检测法

![R语言数据清洗术:Poisson分布下的异常值检测法](https://ucc.alicdn.com/images/user-upload-01/img_convert/a12c695f8b68033fc45008ede036b653.png?x-oss-process=image/resize,s_500,m_lfit) # 1. R语言与数据清洗概述 数据清洗作为数据分析的初级阶段,是确保后续分析质量的关键。在众多统计编程语言中,R语言因其强大的数据处理能力,成为了数据清洗的宠儿。本章将带您深入了解数据清洗的含义、重要性以及R语言在其中扮演的角色。 ## 1.1 数据清洗的重要性
recommend-type

设计一个简易的Python问答程序

设计一个简单的Python问答程序,我们可以使用基本的命令行交互,结合字典或者其他数据结构来存储常见问题及其对应的答案。下面是一个基础示例: ```python # 创建一个字典存储问题和答案 qa_database = { "你好": "你好!", "你是谁": "我是一个简单的Python问答程序。", "你会做什么": "我可以回答你关于Python的基础问题。", } def ask_question(): while True: user_input = input("请输入一个问题(输入'退出'结束):")
recommend-type

PHP疫情上报管理系统开发与数据库实现详解

资源摘要信息:"本资源是一个PHP疫情上报管理系统,包含了源码和数据库文件,文件编号为170948。该系统是为了适应疫情期间的上报管理需求而开发的,支持网络员用户和管理员两种角色进行数据的管理和上报。 管理员用户角色主要具备以下功能: 1. 登录:管理员账号通过直接在数据库中设置生成,无需进行注册操作。 2. 用户管理:管理员可以访问'用户管理'菜单,并操作'管理员'和'网络员用户'两个子菜单,执行增加、删除、修改、查询等操作。 3. 更多管理:通过点击'更多'菜单,管理员可以管理'评论列表'、'疫情情况'、'疫情上报管理'、'疫情分类管理'以及'疫情管理'等五个子菜单。这些菜单项允许对疫情信息进行增删改查,对网络员提交的疫情上报进行管理和对疫情管理进行审核。 网络员用户角色的主要功能是疫情管理,他们可以对疫情上报管理系统中的疫情信息进行增加、删除、修改和查询等操作。 系统的主要功能模块包括: - 用户管理:负责系统用户权限和信息的管理。 - 评论列表:管理与疫情相关的评论信息。 - 疫情情况:提供疫情相关数据和信息的展示。 - 疫情上报管理:处理网络员用户上报的疫情数据。 - 疫情分类管理:对疫情信息进行分类统计和管理。 - 疫情管理:对疫情信息进行全面的增删改查操作。 该系统采用面向对象的开发模式,软件开发和硬件架设都经过了细致的规划和实施,以满足实际使用中的各项需求,并且完善了软件架设和程序编码工作。系统后端数据库使用MySQL,这是目前广泛使用的开源数据库管理系统,提供了稳定的性能和数据存储能力。系统前端和后端的业务编码工作采用了Thinkphp框架结合PHP技术,并利用了Ajax技术进行异步数据交互,以提高用户体验和系统响应速度。整个系统功能齐全,能够满足疫情上报管理和信息发布的业务需求。" 【标签】:"java vue idea mybatis redis" 从标签来看,本资源虽然是一个PHP疫情上报管理系统,但提到了Java、Vue、Mybatis和Redis这些技术。这些技术标签可能是误标,或是在资源描述中提及的其他技术栈。在本系统中,主要使用的技术是PHP、ThinkPHP框架、MySQL数据库、Ajax技术。如果资源中确实涉及到Java、Vue等技术,可能是前后端分离的开发模式,或者系统中某些特定模块使用了这些技术。 【压缩包子文件的文件名称列表】: CS268000_*** 此列表中只提供了单一文件名,没有提供详细文件列表,无法确定具体包含哪些文件和资源,但假设它可能包含了系统的源代码、数据库文件、配置文件等必要组件。