用深度学习写一个pytorch框架下的可见光和红外图像融合的代码
时间: 2023-09-19 11:05:03 浏览: 97
基于深度学习的红外与可见光图像的融合python源码(课程设计).zip
5星 · 资源好评率100%
以下是一个基于PyTorch框架的可见光和红外图像融合代码的例子。该代码使用了一个基于UNet的深度神经网络模型,将可见光图像和红外图像分别输入到两个分支中,然后将它们融合到一个输出图像中。此外,该代码还使用了L1损失函数来优化模型的训练过程。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.conv(x)
return x
class UpConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(UpConv, self).__init__()
self.up = nn.ConvTranspose2d(in_channels , in_channels // 2, kernel_size=2, stride=2)
self.conv = ConvBlock(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
diffX = x2.size()[3] - x1.size()[3]
diffY = x2.size()[2] - x1.size()[2]
x1 = nn.functional.pad(x1, (diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2))
x = torch.cat([x2, x1], dim=1)
x = self.conv(x)
return x
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3):
super(UNet, self).__init__()
self.down1 = ConvBlock(in_channels, 64)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.down2 = ConvBlock(64, 128)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.down3 = ConvBlock(128, 256)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.down4 = ConvBlock(256, 512)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.bottom = ConvBlock(512, 1024)
self.up1 = UpConv(1024, 512)
self.up2 = UpConv(512, 256)
self.up3 = UpConv(256, 128)
self.up4 = UpConv(128, 64)
self.conv_last = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x):
x1 = self.down1(x)
x2 = self.pool1(x1)
x3 = self.down2(x2)
x4 = self.pool2(x3)
x5 = self.down3(x4)
x6 = self.pool3(x5)
x7 = self.down4(x6)
x8 = self.pool4(x7)
x9 = self.bottom(x8)
x = self.up1(x9, x7)
x = self.up2(x, x5)
x = self.up3(x, x3)
x = self.up4(x, x1)
x = self.conv_last(x)
return x
def train(model, train_loader, criterion, optimizer, device):
model.train()
train_loss = 0
for batch_idx, (vis, ir) in enumerate(train_loader):
vis, ir = vis.to(device), ir.to(device)
optimizer.zero_grad()
output = model(vis, ir)
loss = criterion(output, vis)
loss.backward()
optimizer.step()
train_loss += loss.item()
return train_loss / len(train_loader)
def test(model, test_loader, criterion, device):
model.eval()
test_loss = 0
with torch.no_grad():
for vis, ir in test_loader:
vis, ir = vis.to(device), ir.to(device)
output = model(vis, ir)
test_loss += criterion(output, vis).item()
return test_loss / len(test_loader)
def run_training(train_loader, test_loader, num_epochs, learning_rate, device):
model = UNet().to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.L1Loss()
for epoch in range(num_epochs):
train_loss = train(model, train_loader, criterion, optimizer, device)
test_loss = test(model, test_loader, criterion, device)
print('Epoch: {}, Train Loss: {:.4f}, Test Loss: {:.4f}'.format(epoch+1, train_loss, test_loss))
if __name__ == '__main__':
# Load the data and create the dataloaders
# ...
# Set the device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Train the model
run_training(train_loader, test_loader, num_epochs=10, learning_rate=0.001, device=device)
```
请注意,该代码仅为示例,您需要根据您的实际数据和需求进行修改和调整。
阅读全文