P = np.eye(3) # 初始状态协方差矩阵 x_filt, P = kalman_filter(x, P) # 对每个方向的时序信号进行卡尔曼滤波 x_filt = kalman_filter(x) y_filt = kalman_filter(y) z_filt = kalman_filter(z)报错 File "G:\project2\KSVD.py", line 36, in <module> x_filt, P = kalman_filter(x, P) TypeError: kalman_filter() takes 1 positional argument but 2 were given
时间: 2023-06-15 11:07:09 浏览: 108
根据错误提示,kalman_filter() 只需要一个参数,但是你在调用时传递了两个参数。你可以尝试修改代码,将 P 作为 kalman_filter() 的一个默认参数。具体方法如下:
```
def kalman_filter(x, P=np.eye(3)):
# 卡尔曼滤波代码
# ...
return x_filt, P
# 调用函数时不需要传递 P 参数
x_filt, P = kalman_filter(x)
y_filt, P = kalman_filter(y)
z_filt, P = kalman_filter(z)
```
这样,P 就成为了可选参数,如果不传递参数,就会使用默认值 np.eye(3)。
相关问题
dt = 1.0 # 采样时间 A = np.array([[1, dt, 0.5*dt*dt], [0, 1, dt], [0, 0, 1]]) # 状态转移矩阵 H = np.array([1, 0, 0]).reshape(1, 3) # 观测矩阵 Q = np.array([[0.05, 0.05, 0.0], [0.05, 0.1, 0.01], [0.0, 0.01, 0.01]]) # 过程噪声协方差矩阵 R = np.array([0.5]).reshape(1, 1) # 观测噪声协方差矩阵 P = np.eye(3) # 状态协方差矩阵 # 定义卡尔曼滤波函数 def kalman_filter(z): x_hat = np.zeros((3, 1)) # 初始状态向量 for i in range(len(z)): # 预测 x_hat_minus = np.dot(A, x_hat) P_minus = np.dot(np.dot(A, P), A.T) + Q # 更新 K = np.dot(np.dot(P_minus, H.T), np.linalg.inv(np.dot(np.dot(H, P_minus), H.T) + R)) x_hat = x_hat_minus + np.dot(K, (z[i] - np.dot(H, x_hat_minus))) P = np.dot((np.eye(3) - np.dot(K, H)), P_minus) return x_hat # 对每个方向的时序信号进行卡尔曼滤波 x_filt = kalman_filter(x)报错File "G:\project2\KSVD.py", line 36, in <module> x_filt = kalman_filter(x) File "G:\project2\KSVD.py", line 26, in kalman_filter P_minus = np.dot(np.dot(A, P), A.T) + Q UnboundLocalError: local variable 'P' referenced before assignment
这个错误是因为在函数内部使用了变量P,但没有将其定义为全局变量或者传递给函数。解决方法是在函数内部将P定义为全局变量,或者将其作为函数的参数传递进来。例如:
```python
def kalman_filter(z, P):
x_hat = np.zeros((3, 1)) # 初始状态向量
for i in range(len(z)):
# 预测
x_hat_minus = np.dot(A, x_hat)
P_minus = np.dot(np.dot(A, P), A.T) + Q
# 更新
K = np.dot(np.dot(P_minus, H.T), np.linalg.inv(np.dot(np.dot(H, P_minus), H.T) + R))
x_hat = x_hat_minus + np.dot(K, (z[i] - np.dot(H, x_hat_minus)))
P = np.dot((np.eye(3) - np.dot(K, H)), P_minus)
return x_hat, P
P = np.eye(3) # 初始状态协方差矩阵
x_filt, P = kalman_filter(x, P)
```
def kalman_filter(z): x_hat = np.zeros((3, 1)) # 初始状态向量 for i in range(len(z)): # 预测 x_hat_minus = np.dot(A, x_hat) P_minus = np.dot(np.dot(A, P), A.T) + Q报错File "G:\project2\KSVD.py", line 36, in <module> x_filt = kalman_filter(x) File "G:\project2\KSVD.py", line 26, in kalman_filter P_minus = np.dot(np.dot(A, P), A.T) + Q UnboundLocalError: local variable 'P' referenced before assignmen
这个错误是因为你在函数中引用了变量 P,但是你没有在函数中定义它。可以在函数开始时定义 P,或者将其作为参数传递给函数。例如:
```
def kalman_filter(z, P):
x_hat = np.zeros((3, 1)) # 初始状态向量
for i in range(len(z)):
# 预测
x_hat_minus = np.dot(A, x_hat)
P_minus = np.dot(np.dot(A, P), A.T) + Q
```
然后在调用函数时传递 P 参数:
```
P = np.eye(3) # 初始协方差矩阵
x_filt = kalman_filter(x, P)
```
阅读全文