flink自定义数据落地到hive代码示例
时间: 2023-05-25 20:05:25 浏览: 203
以下是一个简单的 Flink 代码示例,它将自定义数据流落地到 Hive 表中:
```java
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringEncoder;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.catalog.hive.HiveCatalog;
import org.apache.hadoop.hive.conf.HiveConf;
import java.util.Properties;
public class FlinkHiveSink {
public static void main(String[] args) throws Exception {
// 设置执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 设置 Table 环境
EnvironmentSettings settings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, settings);
// 设置 Hive catalog
String catalogName = "my_hive_catalog";
String defaultDatabase = "default";
String hiveConfDir = "/etc/hadoop/conf";
HiveConf hiveConf = new HiveConf();
hiveConf.addResource(new Path(hiveConfDir + "/hive-site.xml"));
HiveCatalog hiveCatalog = new HiveCatalog(catalogName, defaultDatabase, hiveConf);
tableEnv.registerCatalog(catalogName, hiveCatalog);
// 设置 Kafka 数据源
Properties kafkaProps = new Properties();
kafkaProps.setProperty("bootstrap.servers", "<your-bootstrap-servers>");
kafkaProps.setProperty("group.id", "<your-group-id>");
FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("my-topic", new SimpleStringSchema(), kafkaProps);
DataStream<String> dataStream = env.addSource(kafkaConsumer);
// 将数据流转换为 Table
Table table = tableEnv.fromDataStream(dataStream, "value");
// 定义输出的 Table
String tableName = "my_hive_table";
String createTableStmt = String.format("CREATE TABLE IF NOT EXISTS %s (value STRING) STORED AS TEXTFILE", tableName);
tableEnv.executeSql(createTableStmt);
tableEnv.useCatalog(catalogName);
tableEnv.useDatabase(defaultDatabase);
tableEnv.createTemporaryView("temp_table", table);
String insertStmt = String.format("INSERT INTO %s SELECT * FROM temp_table", tableName);
tableEnv.executeSql(insertStmt);
// 将数据流落地到 HDFS
StreamingFileSink<String> sink = StreamingFileSink
.forRowFormat(new Path("hdfs://<your-hdfs-path>"), new SimpleStringEncoder<String>("UTF-8"))
.build();
dataStream.map(new MapFunction<String, String>() {
@Override
public String map(String value) throws Exception {
return value;
}
}).addSink(sink);
// 执行任务
env.execute("Flink Hive Sink Example");
}
}
```
在这个示例中,我们首先设置了执行环境和 Table 环境。然后,我们设置了 Hive catalog 和 Kafka 数据源。接着,我们将数据流转换为 Table 并定义要输出的 Table。最后,我们使用 Flink 的 StreamingFileSink 将数据写入 HDFS 中。
阅读全文