python用人工蜂群网络优化BP神经网络
时间: 2023-11-05 16:51:56 浏览: 97
人工蜂群算法是一种启发式优化算法,可以应用于神经网络的训练和优化。
下面给出一个使用Python实现人工蜂群优化BP神经网络的示例代码:
```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# 加载数据集
data = load_iris()
X = data.data
y = data.target
# 数据预处理
scaler = StandardScaler()
X = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# BP神经网络
class NeuralNetwork:
def __init__(self, input_dim, hidden_dim, output_dim):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.W1 = np.random.randn(input_dim, hidden_dim)
self.b1 = np.zeros((1, hidden_dim))
self.W2 = np.random.randn(hidden_dim, output_dim)
self.b2 = np.zeros((1, output_dim))
def forward(self, X):
# 前向传播
self.z1 = np.dot(X, self.W1) + self.b1
self.a1 = np.tanh(self.z1)
self.z2 = np.dot(self.a1, self.W2) + self.b2
self.y_hat = np.exp(self.z2) / np.sum(np.exp(self.z2), axis=1, keepdims=True)
def backward(self, X, y, lr):
# 反向传播
delta3 = self.y_hat
delta3[range(len(X)), y] -= 1
dW2 = np.dot(self.a1.T, delta3)
db2 = np.sum(delta3, axis=0, keepdims=True)
delta2 = np.dot(delta3, self.W2.T) * (1 - np.power(self.a1, 2))
dW1 = np.dot(X.T, delta2)
db1 = np.sum(delta2, axis=0)
self.W2 -= lr * dW2
self.b2 -= lr * db2
self.W1 -= lr * dW1
self.b1 -= lr * db1
def predict(self, X):
# 预测
self.forward(X)
return np.argmax(self.y_hat, axis=1)
def evaluate(self, X, y):
# 评估模型
y_pred = self.predict(X)
acc = np.mean(y_pred == y)
return acc
# 人工蜂群算法
class ArtificialBeeColony:
def __init__(self, nn, n_bees, limit=100, max_trials=50):
self.nn = nn
self.n_bees = n_bees
self.limit = limit
self.max_trials = max_trials
self.best_bee = None
self.best_score = -np.inf
def train(self, X_train, y_train, lr):
n_inputs = X_train.shape[1]
n_outputs = len(np.unique(y_train))
self.nn = NeuralNetwork(n_inputs, self.nn.hidden_dim, n_outputs)
self.best_bee = self.nn
self.best_score = self.nn.evaluate(X_train, y_train)
for i in range(self.limit):
bees = [self.nn] * self.n_bees
for j, bee in enumerate(bees):
# 随机选择一个神经元进行调整
layer = np.random.randint(0, 2)
if layer == 0:
neuron = np.random.randint(0, self.nn.hidden_dim)
bee.W1[neuron] += np.random.uniform(-1, 1)
else:
neuron = np.random.randint(0, self.nn.output_dim)
bee.W2[neuron] += np.random.uniform(-1, 1)
# 计算当前神经网络的分数
score = bee.evaluate(X_train, y_train)
if score > self.best_score:
self.best_bee = bee
self.best_score = score
# 若当前分数比原来的好,则更新神经网络
if score > bee.evaluate(X_train, y_train):
bee.backward(X_train, y_train, lr)
else:
# 若当前分数比原来差,进行随机搜索
trial = 0
while trial < self.max_trials:
if layer == 0:
bee.W1[neuron] += np.random.uniform(-1, 1)
else:
bee.W2[neuron] += np.random.uniform(-1, 1)
score = bee.evaluate(X_train, y_train)
if score > bee.evaluate(X_train, y_train):
bee.backward(X_train, y_train, lr)
break
else:
if layer == 0:
bee.W1[neuron] -= np.random.uniform(-1, 1)
else:
bee.W2[neuron] -= np.random.uniform(-1, 1)
trial += 1
# 训练模型
abc = ArtificialBeeColony(nn=NeuralNetwork(input_dim=X_train.shape[1], hidden_dim=5, output_dim=len(np.unique(y_train))),
n_bees=10, limit=100, max_trials=50)
abc.train(X_train, y_train, lr=0.01)
# 评估模型
acc_train = abc.best_bee.evaluate(X_train, y_train)
acc_test = abc.best_bee.evaluate(X_test, y_test)
print('训练集准确率:', acc_train)
print('测试集准确率:', acc_test)
```
这里使用了sklearn中的鸢尾花数据集进行训练和测试,神经网络的输入层为4个神经元,隐藏层为5个神经元,输出层为3个神经元。人工蜂群算法中,每个蜜蜂都是一个神经网络,随机选择一个神经元进行调整,计算当前神经网络的分数,若当前分数比原来的好,则更新神经网络,否则进行随机搜索。最终得到的`abc.best_bee`即为最优神经网络模型。
阅读全文