loss = (1/len(X))*(-y.dot(np.log(y_val))-(1-y).dot(np.log(1-y_val)))

时间: 2024-05-25 21:11:11 浏览: 16
这段代码是用来计算交叉熵损失函数的,其中X是输入数据,y是标签,y_val是模型的输出。具体来说,它是将标签y和模型的输出y_val作为参数,通过公式计算得到模型的损失值。其中,np.log是自然对数函数,dot是矩阵乘法,1-y是将标签y中的0和1互换,以便后续计算。该损失函数的目标是最小化模型的预测误差,使其更接近真实标签。
相关问题

float PID_realize(float temp_val) { /*传入实际值*/ pid.actual_val = temp_val; /*计算目标值与实际值的误差*/ pid.err=pid.target_val-pid.actual_val; /*PID算法实现*/ float increment_val = pid.Kp*(pid.err - pid.err_next) + pid.Ki*pid.err + pid.Kd*(pid.err - 2 * pid.err_next + pid.err_last); /*传递误差*/ pid.err_last = pid.err_next; pid.err_next = pid.err; /*返回增量值*/ return increment_val; }

这段代码是一个 PID 控制器的实现函数。它接受一个实际值 `temp_val` 作为参数,并返回一个增量值。 在函数中,发生了以下操作: 1. `pid.actual_val = temp_val;` 将传入的实际值存储到 `pid` 对象的 `actual_val` 成员变量中。 2. `pid.err = pid.target_val - pid.actual_val;` 计算目标值与实际值之间的误差,将结果存储到 `pid` 对象的 `err` 成员变量中。 3. 根据 PID 控制算法,计算出一个增量值 `increment_val`。这个增量值是根据当前误差、上一次误差和上上次误差以及对应的 PID 系数(`Kp`, `Ki`, `Kd`)进行计算得到的。 4. `pid.err_last = pid.err_next;` 将当前误差 `pid.err` 存储到 `pid` 对象的 `err_last` 成员变量中,以备下一次计算使用。 5. `pid.err_next = pid.err;` 将当前误差 `pid.err` 存储到 `pid` 对象的 `err_next` 成员变量中,以备下一次计算使用。 6. 最后,函数返回计算得到的增量值 `increment_val`。 这段代码实现了一个简单的 PID 控制器,用于根据给定的目标值和实际值计算出一个增量值,用于调节控制系统的输出。具体的 PID 控制算法实现可能会根据实际需求有所不同。

val_loss=[] val_epoch_loss=0 val_loss=loss_function(y_pred,y) val_epoch_loss += val_loss.item() val_epoch_loss /= step val_loss.append(val_epoch_loss)这段代码的含义

这段代码是在进行模型训练的过程中,计算每个 epoch(训练轮数)的验证集损失(validation loss)并将其存储在一个列表中。具体含义如下: - `val_loss=[]`:定义一个空列表,用于存储每个 epoch 的验证集损失。 - `val_epoch_loss=0`:定义一个变量 `val_epoch_loss`,用于累加每个 batch(批次)的验证集损失。 - `val_loss=loss_function(y_pred,y)`:使用预测值 `y_pred` 和真实值 `y` 计算当前 batch 的验证集损失。 - `val_epoch_loss += val_loss.item()`:将当前 batch 的验证集损失加到 `val_epoch_loss` 变量中。 - `val_epoch_loss /= step`:计算当前 epoch 的平均验证集损失,其中 `step` 表示当前 epoch 中 batch 的数量。 - `val_loss.append(val_epoch_loss)`:将当前 epoch 的平均验证集损失添加到 `val_loss` 列表中。 这段代码的目的是在训练过程中对模型进行评估,以确保模型在验证集上的性能是否有所提高。每个 epoch 结束时,都会计算一次验证集损失,并将其存储在 `val_loss` 列表中。最终,可以使用这个列表来绘制损失曲线,以帮助分析模型的性能。

相关推荐

将这段代码转换为伪代码:def levenberg_marquardt(fun, grad, jacobian, x0, iterations, tol): """ Minimization of scalar function of one or more variables using the Levenberg-Marquardt algorithm. Parameters ---------- fun : function Objective function. grad : function Gradient function of objective function. jacobian :function function of objective function. x0 : numpy.array, size=9 Initial value of the parameters to be estimated. iterations : int Maximum iterations of optimization algorithms. tol : float Tolerance of optimization algorithms. Returns ------- xk : numpy.array, size=9 Parameters wstimated by optimization algorithms. fval : float Objective function value at xk. grad_val : float Gradient value of objective function at xk. grad_log : numpy.array The record of gradient of objective function of each iteration. """ fval = None # y的最小值 grad_val = None # 梯度的最后一次下降的值 x_log = [] # x的迭代值的数组,n*9,9个参数 y_log = [] # y的迭代值的数组,一维 grad_log = [] # 梯度下降的迭代值的数组 x0 = asarray(x0).flatten() if x0.ndim == 0: x0.shape = (1,) # iterations = len(x0) * 200 k = 1 xk = x0 updateJ = 1 lamda = 0.01 old_fval = fun(x0) gfk = grad(x0) gnorm = np.amax(np.abs(gfk)) J = [None] H = [None] while (gnorm > tol) and (k < iterations): if updateJ == 1: x_log = np.append(x_log, xk.T) yk = fun(xk) y_log = np.append(y_log, yk) J = jacobian(x0) H = np.dot(J.T, J) H_lm = H + (lamda * np.eye(9)) gfk = grad(xk) pk = - np.linalg.inv(H_lm).dot(gfk) pk = pk.A.reshape(1, -1)[0] # 二维变一维 xk1 = xk + pk fval = fun(xk1) if fval < old_fval: lamda = lamda / 10 xk = xk1 old_fval = fval updateJ = 1 else: updateJ = 0 lamda = lamda * 10 gnorm = np.amax(np.abs(gfk)) k = k + 1 grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) fval = old_fval grad_val = grad_log[-1] return xk, fval, grad_val, x_log, y_log, grad_log

将下面这段源码转换为伪代码:def bfgs(fun, grad, x0, iterations, tol): """ Minimization of scalar function of one or more variables using the BFGS algorithm. Parameters ---------- fun : function Objective function. grad : function Gradient function of objective function. x0 : numpy.array, size=9 Initial value of the parameters to be estimated. iterations : int Maximum iterations of optimization algorithms. tol : float Tolerance of optimization algorithms. Returns ------- xk : numpy.array, size=9 Parameters wstimated by optimization algorithms. fval : float Objective function value at xk. grad_val : float Gradient value of objective function at xk. grad_log : numpy.array The record of gradient of objective function of each iteration. """ fval = None grad_val = None x_log = [] y_log = [] grad_log = [] x0 = asarray(x0).flatten() # iterations = len(x0) * 200 old_fval = fun(x0) gfk = grad(x0) k = 0 N = len(x0) I = np.eye(N, dtype=int) Hk = I old_old_fval = old_fval + np.linalg.norm(gfk) / 2 xk = x0 x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) gnorm = np.amax(np.abs(gfk)) while (gnorm > tol) and (k < iterations): pk = -np.dot(Hk, gfk) try: alpha, fc, gc, old_fval, old_old_fval, gfkp1 = _line_search_wolfe12(fun, grad, xk, pk, gfk, old_fval, old_old_fval, amin=1e-100, amax=1e100) except _LineSearchError: break x1 = xk + alpha * pk sk = x1 - xk xk = x1 if gfkp1 is None: gfkp1 = grad(x1) yk = gfkp1 - gfk gfk = gfkp1 k += 1 gnorm = np.amax(np.abs(gfk)) grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) if (gnorm <= tol): break if not np.isfinite(old_fval): break try: rhok = 1.0 / (np.dot(yk, sk)) except ZeroDivisionError: rhok = 1000.0 if isinf(rhok): rhok = 1000.0 A1 = I - sk[:, np.newaxis] * yk[np.newaxis, :] * rhok A2 = I - yk[:, np.newaxis] * sk[np.newaxis, :] * rhok Hk = np.dot(A1, np.dot(Hk, A2)) + (rhok * sk[:, np.newaxis] * sk[np.newaxis, :]) fval = old_fval grad_val = grad_log[-1] return xk, fval, grad_val, x_log, y_log, grad_log

60/60 [==============================] - 19s 89ms/step - loss: 229.5776 - accuracy: 0.7818 - val_loss: 75.8205 - val_accuracy: 0.2848 Epoch 2/50 60/60 [==============================] - 5s 78ms/step - loss: 59.5195 - accuracy: 0.8323 - val_loss: 52.4355 - val_accuracy: 0.7152 Epoch 3/50 60/60 [==============================] - 5s 77ms/step - loss: 47.9256 - accuracy: 0.8453 - val_loss: 47.9466 - val_accuracy: 0.2848 Epoch 4/50 60/60 [==============================] - 5s 77ms/step - loss: 41.7355 - accuracy: 0.8521 - val_loss: 37.7279 - val_accuracy: 0.2848 Epoch 5/50 60/60 [==============================] - 5s 76ms/step - loss: 40.1783 - accuracy: 0.8505 - val_loss: 40.2293 - val_accuracy: 0.7152 Epoch 6/50 60/60 [==============================] - 5s 76ms/step - loss: 37.8785 - accuracy: 0.8781 - val_loss: 38.5298 - val_accuracy: 0.2848 Epoch 7/50 60/60 [==============================] - 5s 77ms/step - loss: 37.1490 - accuracy: 0.8786 - val_loss: 37.1918 - val_accuracy: 0.2848 Epoch 8/50 60/60 [==============================] - 5s 78ms/step - loss: 34.6709 - accuracy: 0.9156 - val_loss: 34.0621 - val_accuracy: 0.2765 Epoch 9/50 60/60 [==============================] - 5s 76ms/step - loss: 35.7891 - accuracy: 0.8849 - val_loss: 37.8741 - val_accuracy: 0.7152 Epoch 10/50 60/60 [==============================] - 5s 76ms/step - loss: 34.5359 - accuracy: 0.9141 - val_loss: 35.2664 - val_accuracy: 0.7152 Epoch 11/50 60/60 [==============================] - 5s 76ms/step - loss: 34.6172 - accuracy: 0.9016 - val_loss: 34.5135 - val_accuracy: 0.6258 Epoch 12/50 60/60 [==============================] - 5s 76ms/step - loss: 34.2331 - accuracy: 0.9083 - val_loss: 34.0945 - val_accuracy: 0.9168 Epoch 13/50 60/60 [==============================] - 5s 79ms/step - loss: 37.4175 - accuracy: 0.9000 - val_loss: 37.7885 - val_accuracy: 0.7152 16/16 - 0s - loss: 34.0621 - accuracy: 0.2765 - 307ms/epoch - 19ms/step Test accuracy: 0.27650728821754456

import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt # 定义RBF神经网络的类 class RBFNetwork(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RBFNetwork, self).__init__() # 初始化输入层,隐含层,输出层的节点数 self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重矩阵和偏置向量 self.W1 = nn.Parameter(torch.randn(input_size, hidden_size)) # 输入层到隐含层的权重矩阵 self.b1 = nn.Parameter(torch.randn(hidden_size)) # 隐含层的偏置向量 self.W2 = nn.Parameter(torch.randn(hidden_size, output_size)) # 隐含层到输出层的权重矩阵 self.b2 = nn.Parameter(torch.randn(output_size)) # 输出层的偏置向量 def forward(self,x): # 前向传播过程 x = torch.from_numpy(x).float() # 将输入向量转换为张量 x = x.view(-1, self.input_size) # 调整输入向量的形状,使其与权重矩阵相匹配 h = torch.exp(-torch.cdist(x, self.W1.t()) + self.b1) # 计算隐含层的输出值,使用高斯径向基函数作为激活函数 y = F.linear(h, self.W2.t(), self.b2) # 计算输出层的输出值,使用线性函数作为激活函数 return y #定义pid控制器 class Pid(): def __init__(self, exp_val, kp, ki, kd): self.KP = kp self.KI = ki self.KD = kd self.exp_val = exp_val self.now_val = 0 self.sum_err = 0 self.now_err = 0 self.last_err = 0 def cmd_pid(self): self.last_err = self.now_err self.now_err = self.exp_val - self.now_val self.sum_err += self.now_err self.now_val = self.KP * (self.exp_val - self.now_val) \ + self.KI * self.sum_err + self.KD * (self.now_err - self.last_err) return self.now_val def err_pid(self): self.last_err = self.now_err self.now_err = self.exp_val - self.now_val self.sum_err += self.now_err self.p_err = self.exp_val - self.now_val self.i_err = self.sum_err self.d_err = self.now_err - self.last_err self.now_val = self.KP * (self.exp_val - self.now_val) \ + self.KI * self.sum_err + self.KD * (self.now_err - self.last_err) return self.p_err, self.i_err, self.d_err rbf_net = RBFNetwork(3,10,4) pid_val = [] #对pid进行初始化,目标值是1000 ,p=0.1 ,i=0.15, d=0.1 A_Pid = Pid(1000, 0.1, 0.1, 0.1) # 然后循环100次把数存进数组中去 for i in range(0, 100): input_vector = np.array(A_Pid.err_pid()) output_vector = rbf_net(input_vector) output_vector = output_vector.reshape(4,1) A_Pid = Pid(1000, output_vector[0], output_vector[1], output_vector[2]) pid_val.append(A_Pid.cmd_pid())

最新推荐

recommend-type

模板059.pptx

论文答辩ppt模板
recommend-type

全国各地电信铁通DNS服务器地址.doc

服务器
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层:
recommend-type

matlab画矢量分布图

在MATLAB中,绘制矢量分布图通常用于可视化二维或三维空间中的向量场,这有助于理解力场、风速、磁场等现象的分布情况。以下是使用MATLAB创建矢量分布图的基本步骤: 1. 准备数据:首先,你需要有一个表示向量场的矩阵,其中每个元素代表一个点的x、y坐标及其对应的矢量分量。 2. 使用`quiver`函数:MATLAB提供了一个内置函数`quiver(x, y, U, V)`,其中`x`和`y`是网格的行和列坐标,`U`和`V`是对应于每个网格点的x和y分量的向量值。 ```matlab [X, Y] = meshgrid(x, y); % 创建网格 quiver(X,