for iteration in range(it_time): wx = torch.mm(train_x, w) # 前向传播 loss = (0.5 * (train_y - wx) ** 2).mean() # 计算 MSE loss loss.backward() # 反向传播 y_train_loss[iteration] = loss w.data.sub_(lr*w.grad) # w = w - lr*w.grad w.grad.zero_() # w的梯度清零,如果不清零,会一直累加 if iteration%100 == 0 and iteration!=0: wx_val = torch.mm(val_x, w) y_val_loss[int(iteration/100)] = (0.5 * (val_y - wx_val) ** 2).mean() 怎么保存这段代码的权重信息

时间: 2024-02-15 20:20:03 浏览: 126
要保存这段代码的权重信息,你可以使用 `torch.save()` 方法将模型的参数保存到文件中。在你的代码中,你可以在循环结束后添加以下代码来保存权重信息: ```python torch.save(w, 'model_weights.pth') ``` 这会将变量 `w` 的权重保存到名为 `model_weights.pth` 的文件中。你可以自定义文件名和路径。 如果你想要保存整个模型,包括其他参数和网络结构等信息,可以使用以下代码: ```python torch.save(model, 'model.pth') ``` 其中,`model` 是你的模型对象。这样会将整个模型保存到名为 `model.pth` 的文件中。 要加载已保存的权重信息,可以使用 `torch.load()` 方法。例如,要加载之前保存的 `model_weights.pth` 文件中的权重,可以使用以下代码: ```python w = torch.load('model_weights.pth') ``` 这会将权重加载到变量 `w` 中。如果要加载整个模型,可以使用以下代码: ```python model = torch.load('model.pth') ``` 请注意,加载模型时,你需要确保与保存时的模型结构和参数匹配。
相关问题

def FGSM(self, x, y_true, y_target=None, eps=0.03, alpha=2/255, iteration=1): self.set_mode('eval') x = Variable(cuda(x, self.cuda), requires_grad=True) y_true = Variable(cuda(y_true, self.cuda), requires_grad=False) if y_target is not None: targeted = True y_target = Variable(cuda(y_target, self.cuda), requires_grad=False) else: targeted = False h = self.net(x) prediction = h.max(1)[1] accuracy = torch.eq(prediction, y_true).float().mean() cost = F.cross_entropy(h, y_true) if iteration == 1: if targeted: x_adv, h_adv, h = self.attack.fgsm(x, y_target, True, eps) else: x_adv, h_adv, h = self.attack.fgsm(x, y_true, False, eps) else: if targeted: x_adv, h_adv, h = self.attack.i_fgsm(x, y_target, True, eps, alpha, iteration) else: x_adv, h_adv, h = self.attack.i_fgsm(x, y_true, False, eps, alpha, iteration) prediction_adv = h_adv.max(1)[1] accuracy_adv = torch.eq(prediction_adv, y_true).float().mean() cost_adv = F.cross_entropy(h_adv, y_true) # make indication of perturbed images that changed predictions of the classifier if targeted: changed = torch.eq(y_target, prediction_adv) else: changed = torch.eq(prediction, prediction_adv) changed = torch.eq(changed, 0) changed = changed.float().view(-1, 1, 1, 1).repeat(1, 3, 28, 28) changed[:, 0, :, :] = where(changed[:, 0, :, :] == 1, 252, 91) changed[:, 1, :, :] = where(changed[:, 1, :, :] == 1, 39, 252) changed[:, 2, :, :] = where(changed[:, 2, :, :] == 1, 25, 25) changed = self.scale(changed/255) changed[:, :, 3:-2, 3:-2] = x_adv.repeat(1, 3, 1, 1)[:, :, 3:-2, 3:-2] self.set_mode('train') return x_adv.data, changed.data,\ (accuracy.item(), cost.item(), accuracy_adv.item(), cost_adv.item())

这段代码是一个实现了FGSM(Fast Gradient Sign Method)攻击的函数。FGSM是一种用于生成对抗样本的方法,通过在输入样本上添加一小步扰动来欺骗分类器,使其产生错误的分类结果。 该函数的输入参数包括原始输入样本x、真实标签y_true、目标标签y_target(可选)、扰动范围eps、扰动步长alpha和迭代次数iteration。 函数首先将模型设置为评估模式,然后将输入样本转化为可求导变量,并计算原始样本在模型上的预测结果和准确率。然后计算原始样本在模型上的交叉熵损失。 接下来根据迭代次数选择使用FGSM攻击还是I-FGSM(Iterative FGSM)攻击。如果目标标签y_target存在,则使用目标攻击,否则使用非目标攻击。攻击过程中,对输入样本添加扰动,并计算扰动后的样本在模型上的预测结果和准确率。 最后,将产生的对抗样本、扰动图像、原始样本在模型上的准确率和损失作为输出返回。 值得注意的是,代码中还包含了一个用于生成扰动图像的部分。首先根据模型预测结果确定哪些样本的分类结果发生了变化,然后将这些样本的对应像素位置修改为特定的颜色值,以突出显示扰动部分。最后将扰动图像与对抗样本叠加,形成最终的扰动图像。 请问我还能为您解答其他问题吗?

import torch train_data = torch.tensor([[[ 58.]], [[367.]], [[324.]], [[620.]], [[146.]], [[681.]], [[582.]], [[432.]], [[ 87.]], [[415.]], [[443.]], [[680.]], [[ 0.]], [[230.]], [[484.]], [[497.]], [[324.]], [[620.]], [[681.]], [[ 84.]], [[484.]], [[448.]], [[144.]], [[536.]], [[680.]], [[ 0.]]], dtype = torch.float32) class POEM_LSTM(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers): super(POEM_LSTM, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.LstmLayer = torch.nn.LSTM(input_size=self.input_size, hidden_size=self.hidden_size, num_layers=self.num_layers, bias= False) self.LinearLayer = torch.nn.Linear(in_features=self.hidden_size, out_features=self.input_size) def forward(self, x): LstmLayerOutput, _ = self.LstmLayer(x) # h_c = (h_t, c_t) FinalOutput = self.LinearLayer(LstmLayerOutput) #需要对输出进行圆整,因为onehot为0~681的整数 return FinalOutput poem_lstm = POEM_LSTM(1,3,2) #网络模型实例化 loss = torch.nn.MSELoss() opt = torch.optim.Adam(poem_lstm.parameters(), lr = 0.001) for i in range(200): # input = train_data[0] for j in range(0,26): opt.zero_grad() # 每个iteration梯度清0 output= poem_lstm(torch.tensor([[j]],dtype=torch.float32)) l_loss = loss(output, train_data[j]) l_loss.backward() opt.step() if i == 199: # print(poem_lstm.state_dict()) print(output) print(train_data[j]) print(l_loss) print('\n')

这段代码定义了一个名为POEM_LSTM的PyTorch模型,该模型包含一个LSTM层和一个线性层。输入数据train_data是一个三维张量,包含了28个时间步、每个时间步一个特征值。LSTM层将输入数据train_data传入,得到LstmLayerOutput作为输出。而LinearLayer将LstmLayerOutput作为输入,输出和输入相同的形状的张量。
阅读全文

相关推荐

翻译这段代码:print("start:") start = time.time() K = 9 skf = StratifiedKFold(n_splits=K,shuffle=True,random_state=2018) auc_cv = [] pred_cv = [] for k,(train_in,test_in) in enumerate(skf.split(X,y)): X_train,X_test,y_train,y_test = X[train_in],X[test_in],\ y[train_in],y[test_in] # The data structure 数据结构 lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) # Set the parameters 设置参数 params = { 'boosting': 'gbdt', 'objective':'binary', 'verbosity': -1, 'learning_rate': 0.01, 'metric': 'auc', 'num_leaves':17 , 'min_data_in_leaf': 26, 'min_child_weight': 1.12, 'max_depth': 9, "feature_fraction": 0.91, "bagging_fraction": 0.82, "bagging_freq": 2, } print('................Start training..........................') # train gbm = lgb.train(params, lgb_train, num_boost_round=2000, valid_sets=lgb_eval, early_stopping_rounds=100, verbose_eval=100) print('................Start predict .........................') # Predict y_pred = gbm.predict(X_test,num_iteration=gbm.best_iteration) # Evaluate tmp_auc = roc_auc_score(y_test,y_pred) auc_cv.append(tmp_auc) print("valid auc:",tmp_auc) # Test pred = gbm.predict(X, num_iteration = gbm.best_iteration) pred_cv.append(pred) # the mean auc score of StratifiedKFold StratifiedKFold的平均auc分数 print('the cv information:') print(auc_cv) lgb_mean_auc = np.mean(auc_cv) print('cv mean score',lgb_mean_auc) end = time.time() lgb_practice_time=end-start print("......................run with time: {} s".format(lgb_practice_time) ) print("over:*") # turn into array 变为阵列 res = np.array(pred_cv) print("rusult:",res.shape) # mean the result 平均结果 r = res.mean(axis = 0) print('result shape:',r.shape) result = pd.DataFrame() result['company_id'] = range(1,df.shape[0]+1) result['pred_prob'] = r

x_train = train.drop(['id','label'], axis=1) y_train = train['label'] x_test=test.drop(['id'], axis=1) def abs_sum(y_pre,y_tru): y_pre=np.array(y_pre) y_tru=np.array(y_tru) loss=sum(sum(abs(y_pre-y_tru))) return loss def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test def lgb_model(x_train, y_train, x_test): lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb") return lgb_test lgb_test = lgb_model(x_train, y_train, x_test) 这段代码运用了什么学习模型

def cv_model(clf, train_x, train_y, test_x, clf_name='lgb'): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) train = np.zeros(train_x.shape[0]) test = np.zeros(test_x.shape[0]) cv_scores = [] for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************ {} *************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'min_child_weight': 5, 'num_leaves': 2**6, 'lambda_l2': 10, 'feature_fraction': 0.9, 'bagging_fraction': 0.9, 'bagging_freq': 4, 'learning_rate': 0.01, 'seed': 2021, 'nthread': 28, 'n_jobs':-1, 'silent': True, 'verbose': -1, } model = clf.train(params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], #categorical_feature = categorical_feature, verbose_eval=500,early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) train[valid_index] = val_pred test += test_pred / kf.n_splits cv_scores.append(roc_auc_score(val_y, val_pred)) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) return train, test lgb_train, lgb_test = cv_model(lgb, x_train, y_train, x_test)这段代码什么意思,分类标签为0和1,属于二分类,预测结果点击率的数值是怎么来的

import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import LassoCV from sklearn.model_selection import train_test_split # 加载数据集 abalone = fetch_openml(name='abalone', version=1, as_frame=True) # 获取特征和标签 X = abalone.data y = abalone.target # 对性别特征进行独热编码 gender_encoder = OneHotEncoder(sparse=False) gender_encoded = gender_encoder.fit_transform(X[['Sex']]) # 特征缩放 scaler = StandardScaler() X_scaled = scaler.fit_transform(X.drop('Sex', axis=1)) # 合并编码后的性别特征和其他特征 X_processed = np.hstack((gender_encoded, X_scaled)) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_processed, y, test_size=0.2, random_state=42) # 初始化Lasso回归模型 lasso = LassoCV(alphas=[1e-4], random_state=42) # 随机梯度下降算法迭代次数和损失函数值 n_iterations = 200 losses = [] for iteration in range(n_iterations): # 随机选择一个样本 random_index = np.random.randint(len(X_train)) X_sample = X_train[random_index].reshape(1, -1) y_sample = y_train[random_index].reshape(1, -1) # 计算目标函数值与最优函数值之差 lasso.fit(X_sample, y_sample) loss = np.abs(lasso.coef_ - lasso.coef_).sum() losses.append(loss) # 绘制迭代效率图 plt.plot(range(n_iterations), losses) plt.xlabel('Iteration') plt.ylabel('Difference from Optimal Loss') plt.title('Stochastic Gradient Descent Convergence') plt.show()上述代码报错,请修改

最新推荐

recommend-type

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx
recommend-type

【大越期货-2024研报】生猪期货早报.pdf

研究报告
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001