with autocast(): #----------------------# # 前向传播 #----------------------# outputs = model_train(imgs) #----------------------# # 计算损失 #----------------------# if focal_loss: loss = Focal_Loss(outputs, pngs, weights, num_classes = num_classes) else: loss = CE_Loss(outputs, pngs, weights, num_classes = num_classes) if dice_loss: main_dice = Dice_loss(outputs, labels) loss = loss + main_dice with torch.no_grad(): #-------------------------------# # 计算f_score #-------------------------------# _f_score = f_score(outputs, labels) #----------------------# # 反向传播 #----------------------# scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() total_loss += loss.item() total_f_score += _f_score.item() if local_rank == 0: pbar.set_postfix(**{'total_loss': total_loss / (iteration + 1), 'f_score' : total_f_score / (iteration + 1), 'lr' : get_lr(optimizer)}) pbar.update(1)
时间: 2023-09-16 13:09:08 浏览: 281
前向传播与反向传播
这段代码是一个训练神经网络的代码段。这里使用了PyTorch中的autocast()函数来自动进行混合精度训练,以减少内存使用和加快运行速度。代码中还使用了两种不同的损失函数(Focal Loss和Cross Entropy Loss)进行训练,并使用Dice Loss来计算F-score。在每个训练迭代中,使用scaler.scale()函数来缩放损失的值,以保证梯度计算的稳定性。最后,根据训练过程中的损失和F-score指标来进行模型的优化更新。如果local_rank等于0,则使用tqdm库来显示训练进度条和训练指标的变化。
阅读全文