with autocast(): #----------------------# # 前向传播 #----------------------# outputs = model_train(imgs) #----------------------# # 计算损失 #----------------------# if focal_loss: loss = Focal_Loss(outputs, pngs, weights, num_classes = num_classes) else: loss = CE_Loss(outputs, pngs, weights, num_classes = num_classes) if dice_loss: main_dice = Dice_loss(outputs, labels) loss = loss + main_dice with torch.no_grad(): #-------------------------------# # 计算f_score #-------------------------------# _f_score = f_score(outputs, labels) #----------------------# # 反向传播 #----------------------# scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() total_loss += loss.item() total_f_score += _f_score.item() if local_rank == 0: pbar.set_postfix(**{'total_loss': total_loss / (iteration + 1), 'f_score' : total_f_score / (iteration + 1), 'lr' : get_lr(optimizer)}) pbar.update(1)
时间: 2023-09-16 22:09:08 浏览: 273
这段代码是一个训练神经网络的代码段。这里使用了PyTorch中的autocast()函数来自动进行混合精度训练,以减少内存使用和加快运行速度。代码中还使用了两种不同的损失函数(Focal Loss和Cross Entropy Loss)进行训练,并使用Dice Loss来计算F-score。在每个训练迭代中,使用scaler.scale()函数来缩放损失的值,以保证梯度计算的稳定性。最后,根据训练过程中的损失和F-score指标来进行模型的优化更新。如果local_rank等于0,则使用tqdm库来显示训练进度条和训练指标的变化。
相关问题
with autocast():
`autocast()` is a context manager provided by TensorFlow that automatically casts variables to a certain precision (either `float16` or `float32`) depending on the operations being performed. This can help improve the speed and memory usage of the model without sacrificing accuracy. Within the context of `autocast()`, TensorFlow will automatically cast variables to the appropriate precision based on the types of operations being performed. Once the context is exited, variables will return to their original precision.
from .autocast_mode import autocast ImportError: attempted relative import with no known parent package
这个错误通常是由于相对导入没有找到父包导致的。相对导入是指从当前模块开始,使用点号来指定导入路径的方式。在这种情况下,Python 解释器无法确定父包的位置,因此会引发 ImportError。
要解决这个问题,可以使用绝对导入代替相对导入。绝对导入是指从项目的根目录开始,指定完整的导入路径。
例如,假设你的项目结构如下所示:
```
project/
main.py
package/
__init__.py
module.py
```
如果你在 `module.py` 中想要导入 `autocast_mode` 模块,你可以使用绝对导入的方式:
```python
from package.autocast_mode import autocast
```
这样就能够正确导入 `autocast_mode` 模块了。
阅读全文