17.某系统内存容量4GB,页面大小4KB,采用反置页表,一个页表项需4B。当系统中有40个进程(设每个进程用1GB地址空间)时,反置页表占用的内存容量是( ) A.4MBB.1OMBC.20MBD.40MB

时间: 2024-03-26 15:36:58 浏览: 12
每个进程使用1GB地址空间,即每个进程有$2^{30}$B的地址空间,每个页面大小为4KB,即一页有$2^{12}$B,所以每个进程有$2^{30}/2^{12}=2^{18}$个页表项。 40个进程共有$40\times2^{18}$个页表项,每个页表项需4B,所以反置页表占用的内存容量为$40\times2^{18}\times4B=320MB$。 因此,选项B. 10MB 是错误的,选项C. 20MB 和选项D. 40MB 也都是错误的。正确答案是选项A. 4MB。
相关问题

在一页式虚拟存储管理系统中,页面大小为4KB,系统支持的最大物理内存是4GB,某进程虚拟地址空间大小为256KB。(1)若页表中需要设置存在位、访问位、修改位、读写位等控制位,此进程的页表有多少页表项?每个页表项最少需要占几个字节?(2)以下是此进程要访问的逻辑地址(16进制数),0x12A5、0x3008、0x279F、0x12A7,请计算相应的页号。(3)若进程已按照这些页面序列访问了内存,接下来将访问5、4、3、2号页。初始分配给该进程的页框数为3,系统采用固定分配、局部置换。分别采用FIFO、LRU、CLOCK页面淘汰算法时会各淘汰哪页?

1. 由于页面大小为4KB,所以虚拟地址空间大小为256KB,即256KB/4KB=64个页面。每个页面对应一个页表项,因此此进程的页表有64个页表项。每个页表项需要设置存在位、访问位、修改位、读写位等控制位,假设每个控制位占1个字节,则每个页表项需要占4个字节(存在位+访问位+修改位+读写位)+ 4个字节(页帧号)=8个字节。 2. 逻辑地址的前20位为页号,后12位为页内偏移量。因此,0x12A5/4KB=0x4(整数部分为页号),0x3008/4KB=0xC(整数部分为页号),0x279F/4KB=0xA(整数部分为页号),0x12A7/4KB=0x4(整数部分为页号)。 3. 初始分配给该进程的页框数为3,因此需要进行页面置换。采用FIFO、LRU、CLOCK页面淘汰算法时,情况如下: (1)FIFO页面淘汰算法 首先将0、1、2号页分别分配到3个空闲页框中。接下来访问0号页,1号页,2号页依次被加载到页框中。当需要加载5号页时,由于页框已经全部被占用,需要选择一个页框进行置换。此时,最先被加载的0号页即为最老的页,因此选择将其置换出去。同理,当需要加载4号页时,选择1号页进行置换;当需要加载3号页时,选择2号页进行置换;当需要加载2号页时,选择5号页进行置换。因此,FIFO页面淘汰算法会依次淘汰0、1、2、5号页。 (2)LRU页面淘汰算法 首先将0、1、2号页分别分配到3个空闲页框中。接下来访问0号页、1号页、2号页依次被加载到页框中,并且访问时更新对应页表项的访问位。当需要加载5号页时,由于页框已经全部被占用,需要选择一个页框进行置换。此时,最近最少使用的页为最老的页,即访问时间最久的页,因此选择将其置换出去。同理,当需要加载4号页时,选择访问时间最久的1号页进行置换;当需要加载3号页时,选择访问时间最久的2号页进行置换;当需要加载2号页时,选择访问时间最久的5号页进行置换。因此,LRU页面淘汰算法会依次淘汰0、1、2、5号页。 (3)CLOCK页面淘汰算法 首先将0、1、2号页分别分配到3个空闲页框中,并将它们的访问位初始化为0。接下来访问0号页、1号页、2号页依次被加载到页框中,并将对应页表项的访问位设置为1。当需要加载5号页时,由于页框已经全部被占用,需要选择一个页框进行置换。此时,从当前位置开始,寻找访问位为0的页框,同时将经过的页框的访问位设置为0。第一次循环后,0号页的访问位被设置为0;第二次循环后,1号页的访问位被设置为0;第三次循环后,2号页的访问位被设置为0;第四次循环后,5号页的访问位被设置为0,此时选择5号页进行置换。同理,当需要加载4号页时,需要经过2次循环,此时选择1号页进行置换;当需要加载3号页时,需要经过1次循环,此时选择2号页进行置换;当需要加载2号页时,需要经过3次循环,此时选择0号页进行置换。因此,CLOCK页面淘汰算法会依次淘汰5、1、2、0号页。

如何在sdb盘中创建一个主分区,大小为4GB,一个扩 展分区,大小为8GB。

您可以使用磁盘管理工具来创建主分区和扩展分区。首先,右键单击“我的电脑”,选择“管理”,然后选择“磁盘管理”。在磁盘管理中,找到您要创建分区的磁盘,右键单击该磁盘并选择“新建简单卷”。按照向导的指示创建主分区,大小为4GB。接下来,右键单击未分配的空间,选择“新建扩展卷”,按照向导的指示创建扩展分区,大小为8GB。

相关推荐

最新推荐

recommend-type

UOS统一操作系统桌面版V20安装指南.pdf

UOS统一操作系统桌面版V20是国产化系统统信操作系统的最新版本,作为一个初装使用手册,本文档提供了详细的安装指导。下面是从安装手册中提取的重要知识点: 1. 安装流程 安装UOS统一操作系统桌面版V20需要按照...
recommend-type

UOS统一操作系统桌面版V20安装指南.doc

在手动安装中,用户需要创建至少三个分区:系统分区(ext4格式)、交换分区(用于虚拟内存)以及数据分区(可选)。确定各分区大小后,确认并开始安装。 **4. 用户设置与初始化** 安装完成后,系统会提示设置用户名...
recommend-type

修改Windows系统单进程使用的内存上限

修改Windows系统单进程使用的内存上限,例:某程序调用内存因WINDOWS系统上限为2G,为使该程序完全的使用4GB内存,可以通过文档中的方法修改
recommend-type

在VMware下安装中标麒麟操作系统7.0以及Neokylin基础知识

VMware 下安装中标麒麟操作系统 7.0 及 Neokylin 基础知识 本文将指导您在 VMware 中安装中标麒麟操作系统 7.0,並介绍 Neokylin 基础知识,包括常用命令及其功能描述。 一、在 VMware 中安装中标麒麟操作系统 7.0...
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依