随机梯度下降算法原理
时间: 2023-09-21 13:11:49 浏览: 118
随机梯度下降算法的原理是通过随机选取一个样本来进行梯度下降计算,而不是遍历所有样本。它是最速梯度下降法的一种变体。在最速梯度下降法中,参数的更新是通过将每个样本的估计值减去实际值求和得到的。而在随机梯度下降法中,参数的更新是通过选定的一个样本的估计值减去实际值求和得到的。这样做的目的是提高迭代速度,避免陷入庞大计算量的泥沼。同时,随机梯度下降算法还需要考虑学习率η的设置,这是一个很重要的问题。我们可以通过反复尝试来找到合适的学习率值,或者使用其他的办法来确定学习率的值。总之,随机梯度下降算法是一种用于优化模型参数的方法,通过随机选取样本进行梯度下降计算来提高迭代速度。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [机器学习中的数学原理——随机梯度下降法](https://blog.csdn.net/weixin_63866037/article/details/128418694)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文