如果要加入,结合本文思路给出加入RGA模块后的对抗样本生成代码
时间: 2024-11-13 21:41:01 浏览: 6
在本文中,作者提出了一种基于知识蒸馏的方法来生成黑盒模型的替代模型,并使用该替代模型生成对抗样本以进行黑盒攻击。如果你希望在此基础上加入RGA(Recurrent Graph Attention)模块,可以考虑将RGA应用于教师模型或学生模型中的某些层,以增强模型的学习能力。以下是一个示例代码,展示了如何在生成对抗样本的过程中加入RGA模块:
### 1. 导入必要的库和模块
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import models, transforms, datasets
from torch.utils.data import DataLoader
from tqdm import tqdm
# 假设已经定义了RGA模块
from rga_module import RGA
```
### 2. 定义教师模型和学生模型
```python
class TeacherModel(nn.Module):
def __init__(self, base_model, num_classes):
super(TeacherModel, self).__init__()
self.base_model = base_model
self.rga = RGA(in_channels=base_model.fc.in_features, out_channels=num_classes)
def forward(self, x):
x = self.base_model(x)
x = self.rga(x)
return x
class StudentModel(nn.Module):
def __init__(self, base_model, num_classes):
super(StudentModel, self).__init__()
self.base_model = base_model
self.rga = RGA(in_channels=base_model.fc.in_features, out_channels=num_classes)
def forward(self, x):
x = self.base_model(x)
x = self.rga(x)
return x
```
### 3. 加载数据集
```python
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
```
### 4. 训练教师模型
```python
teacher_models = [
TeacherModel(models.resnet50(pretrained=True), 10),
TeacherModel(models.densenet169(pretrained=True), 10)
]
for teacher in teacher_models:
teacher.train()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(teacher.parameters(), lr=0.01, momentum=0.9)
for epoch in range(10): # 训练10个epoch
running_loss = 0.0
for inputs, labels in tqdm(train_loader):
optimizer.zero_grad()
outputs = teacher(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}")
```
### 5. 使用知识蒸馏训练学生模型
```python
student_model = StudentModel(models.resnet18(pretrained=True), 10)
student_model.train()
criterion = nn.KLDivLoss(reduction='batchmean')
optimizer = optim.SGD(student_model.parameters(), lr=0.01, momentum=0.9)
for epoch in range(10): # 训练10个epoch
running_loss = 0.0
for inputs, _ in tqdm(train_loader):
optimizer.zero_grad()
# 获取教师模型的输出
with torch.no_grad():
teacher_outputs = [teacher(inputs) for teacher in teacher_models]
teacher_output = sum(teacher_outputs) / len(teacher_models)
# 学生模型的输出
student_output = student_model(inputs)
# 计算损失
loss = criterion(torch.log_softmax(student_output / 10, dim=1), torch.softmax(teacher_output / 10, dim=1))
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}")
```
### 6. 生成对抗样本
```python
def fgsm_attack(image, epsilon, data_grad):
sign_data_grad = data_grad.sign()
perturbed_image = image + epsilon * sign_data_grad
perturbed_image = torch.clamp(perturbed_image, 0, 1)
return perturbed_image
epsilon = 0.03
perturbed_images = []
for images, labels in test_loader:
images.requires_grad = True
outputs = student_model(images)
loss = nn.CrossEntropyLoss()(outputs, labels)
student_model.zero_grad()
loss.backward()
data_grad = images.grad.data
perturbed_image = fgsm_attack(images, epsilon, data_grad)
perturbed_images.append(perturbed_image)
```
### 7. 测试对抗样本的效果
```python
student_model.eval()
correct = 0
total = 0
with torch.no_grad():
for images, labels in zip(perturbed_images, test_loader.dataset.targets):
outputs = student_model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the model on the perturbed images: {100 * correct / total}%')
```
以上代码展示了如何在生成对抗样本的过程中加入RGA模块。通过这种方式,你可以利用RGA模块增强教师模型和学生模型的学习能力,从而提高对抗样本的生成效果。
阅读全文