yolov8模型评估的代码
时间: 2024-04-18 14:22:17 浏览: 205
YOLOv8是一种目标检测模型,它是YOLO(You Only Look Once)系列的最新版本。下面是一个简单的YOLOv8模型评估的代码示例:
```python
import torch
from torchvision import transforms
from PIL import Image
from models import Darknet
from utils.utils import non_max_suppression, load_classes
# 加载模型
model = Darknet("cfg/yolov3.cfg")
model.load_weights("weights/yolov3.weights")
model.eval()
# 加载类别标签
classes = load_classes("data/coco.names")
# 图像预处理
transform = transforms.Compose([
transforms.Resize((416, 416)),
transforms.ToTensor(),
])
# 加载图像
image = Image.open("test.jpg")
image_tensor = transform(image).unsqueeze(0)
# 模型推理
with torch.no_grad():
detections = model(image_tensor)
detections = non_max_suppression(detections, conf_thres=0.5, nms_thres=0.4)
# 打印检测结果
if detections is not None:
# 将检测结果转换为人类可读的格式
detections = detections
for detection in detections:
x1, y1, x2, y2, conf, cls_conf, cls_pred = detection
print(f"Detected {classes[int(cls_pred)]} with confidence {conf.item()}")
```
这段代码首先加载了YOLOv8模型和类别标签,然后对待检测的图像进行预处理。接下来,使用加载的模型对图像进行推理,并使用非极大值抑制(NMS)方法过滤检测结果。最后,打印出检测到的目标类别和置信度。
阅读全文