Light pollution alters our view of the night sky, has environmental impacts and affects our health and safety. For example, plant maturation may be delayed or accelerated, and migration patterns of wildlife affected. Excessive artificial light may confuse our circadian rhythms, leading to poor sleep quality and perhaps physical and mental health issues. Glare caused by artificial lights may contribute to some motor vehicle accidents. Develop a broadly applicable metric, and give its mathematical expression to identify the light pollution risk level of a location. Apply your metric and interpret its results on the following four diverse types of locations: a protected land location, a rural community, a suburban community, and an urban community. Describe three possible intervention strategies to address light pollution.

时间: 2023-03-08 07:19:20 浏览: 109
我们可以使用光度定义一种广泛适用的度量标准,其数学表达式为:L = 4πI / S,其中L表示光度,I表示光照强度,S表示光源的发射面积。使用这个标准可以衡量出一个地点的光污染风险等级。对于一个受保护的土地,如果L值较低,这意味着地点的光污染风险等级较低;对于一个乡村,如果L值较高,这意味着地点的光污染风险等级较高;对于一个郊区,如果L值处于中等水平,这意味着地点的光污染风险等级中等;对于一个城市,如果L值较高,这意味着地点的光污染风险等级比较高。为了解决光污染的问题,我们可以采取三种干预策略:(1)加强公众意识,增强人们对光污染的认识;(2)加强管理,减少不必要的照明活动;(3)制定有效的照明标准,为不同地点安装合适的照明设备。
相关问题

3)A digital clock consists of a screen to display the time and a dial for setting in turn the year, month, day, hour and minute. Twisting the dial to the left reduces by one the value being changed but twisting it to the right increases it by one. Pushing the dial alters which value is being adjusted. At first, it is the year but after the dial is pushed once, it is the month, then after the dial is pushed again, it is the day and so on. Imagine the clock is represented by a class with attributes year, month, day etc. The following is what the code for a method rotateDialLeft() might look like. public void rotateDialLeft() { if (mode == YEAR_MODE) { year--; } else if (mode == MONTH_MODE) { month--; } else if (mode == DAY_MODE) { day--; } else if (mode == HOUR_MODE) { hour--; } else if (mode == MINUTE_MODE) { minute--; } } The code for rotateDialRight() is similar. Apply the Open-Closed Principle to explain why the above code is unsatisfactory from the design viewpoint, considering the possibility of future change to the code, giving an example of such a change. 5)Give the code required for the classes introduced in question 3), focusing on the code for a method selectState() which changes the value that is being adjusted from years to months. Make it clear in which classes the code is to be found. Assume the existence of other methods that are needed such as getMonthSetUpState(). 8)Suppose that in a multiplayer role-playing game, a class Client has a dependency to an interface Fighter with public methods attack(), defend() and escape(). The game designer now wishes for Client to use a class Wizard with three different but equivalent public methods castDestructionSpell(), shield() and portal(). Explain how it is possible to do this using an appropriate design pattern.

3) The current implementation of the rotateDialLeft() method violates the Open-Closed Principle, which states that software entities (classes, modules, functions, etc.) should be open for extension but closed for modification. This means that we should be able to add new functionality without changing the existing code. In the current code, if we want to add a new mode (e.g. seconds), we would need to modify the existing if-else statements and add a new condition. This violates the Open-Closed Principle. An example of a future change that could require modification of the existing code is if we wanted to add a new mode (e.g. century), we would need to modify the existing code and add a new condition. To fix this, we can use the Strategy pattern to encapsulate the different modes and their behavior and make the code more extensible. 5) Here is the code for the classes introduced in question 3: ``` public interface DialMode { void rotateLeft(); void rotateRight(); void selectState(); } public class YearMode implements DialMode { private int year; public YearMode(int year) { this.year = year; } public void rotateLeft() { year--; } public void rotateRight() { year++; } public void selectState() { // do nothing, already in year mode } } public class MonthMode implements DialMode { private int month; public MonthMode(int month) { this.month = month; } public void rotateLeft() { month--; } public void rotateRight() { month++; } public void selectState() { // switch to day mode int daysInMonth = getDaysInMonth(); DayMode dayMode = new DayMode(daysInMonth); mode = dayMode; } private int getDaysInMonth() { // implementation omitted } } public class DayMode implements DialMode { private int day; public DayMode(int day) { this.day = day; } public void rotateLeft() { day--; } public void rotateRight() { day++; } public void selectState() { // switch to hour mode HourMode hourMode = new HourMode(0); mode = hourMode; } } public class HourMode implements DialMode { private int hour; public HourMode(int hour) { this.hour = hour; } public void rotateLeft() { hour--; } public void rotateRight() { hour++; } public void selectState() { // switch to minute mode MinuteMode minuteMode = new MinuteMode(0); mode = minuteMode; } } public class MinuteMode implements DialMode { private int minute; public MinuteMode(int minute) { this.minute = minute; } public void rotateLeft() { minute--; } public void rotateRight() { minute++; } public void selectState() { // switch to year mode YearMode yearMode = new YearMode(2000); mode = yearMode; } } public class Clock { private DialMode mode; public Clock() { YearMode yearMode = new YearMode(2000); mode = yearMode; } public void rotateDialLeft() { mode.rotateLeft(); } public void rotateDialRight() { mode.rotateRight(); } public void selectState() { mode.selectState(); } } ``` The selectState() method is found in each DialMode implementation. In the MonthMode implementation, it switches to the DayMode, in the DayMode implementation, it switches to the HourMode, in the HourMode implementation, it switches to the MinuteMode, and in the MinuteMode implementation, it switches back to the YearMode. 8) We can use the Adapter pattern to adapt the interface of the Wizard class to the Fighter interface. First, we create an adapter class that implements the Fighter interface and has a reference to a Wizard object: ``` public class WizardAdapter implements Fighter { private Wizard wizard; public WizardAdapter(Wizard wizard) { this.wizard = wizard; } public void attack() { wizard.castDestructionSpell(); } public void defend() { wizard.shield(); } public void escape() { wizard.portal(); } } ``` Now, we can use an instance of the WizardAdapter class wherever we need a Fighter object: ``` Client client = new Client(); Wizard wizard = new Wizard(); Fighter wizardAdapter = new WizardAdapter(wizard); client.setFighter(wizardAdapter); ``` In this example, the Client class has a dependency on the Fighter interface. We create a Wizard object and wrap it in a WizardAdapter object that implements the Fighter interface. We then set the wizardAdapter as the fighter for the client. When the client calls the attack(), defend(), or escape() method, it will actually call the corresponding method on the Wizard object through the adapter. This allows us to use the Wizard class as if it implements the Fighter interface, without changing the interface of the Fighter or the implementation of the Wizard.

Sklearn.metrics.roc_auc_score模块中的源代码

以下是sklearn.metrics.roc_auc_score模块的源代码: ```python def roc_auc_score(y_true, y_score, average='macro', sample_weight=None, max_fpr=None, multi_class='raise', labels=None): """Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores. Note: this implementation can be used with binary, multiclass and multilabel classification, but some restrictions apply (see Parameters). Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array-like of shape (n_samples,) or (n_samples, n_classes) True labels or binary label indicators. The binary and multiclass cases expect labels with shape (n_samples,) while the multilabel case expects binary label indicators with shape (n_samples, n_classes). y_score : array-like of shape (n_samples,) or (n_samples, n_classes) Target scores. In the binary and multilabel cases, these can be either probability estimates or non-thresholded decision values (as returned by `decision_function` on some classifiers). In the multiclass case, these must be probability estimates which sum to 1. The binary case expects a shape (n_samples,), and the scores must be the scores of the class with the greater label. The multiclass and multilabel cases expect a shape (n_samples, n_classes). average : {'micro', 'macro', 'samples', 'weighted'} or None, \ default='macro' If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight : array-like of shape (n_samples,), default=None Sample weights. max_fpr : float or None, default=None If not ``None``, the standardized partial AUC [2]_ over the range [0, max_fpr] is returned. For the multiclass case, ``max_fpr`` should be either ``None`` or ``1.0`` as partial AUC makes sense for binary classification only. multi_class : {'raise', 'ovr', 'ovo'}, default='raise' Multiclass only. Determines the type of configuration to use. The default value raises an error, so either ``'ovr'`` or ``'ovo'`` must be passed explicitly. ``'ovr'``: Computes ROC curve independently for each class. For each class, the binary problem y_true == i or not is solved and the corresponding ROC curve is computed and averaged across classes. This is a commonly used strategy for multiclass or multi-label classification problems. ``'ovo'``: Computes pairwise ROC curve for each pair of classes. For each pair of classes, the binary problem y_true == i or y_true == j is solved and the corresponding ROC curve is computed. The micro-averaged ROC curve is computed from the individual curves and hence is agnostic to the class balance. labels : array-like of shape (n_classes,), default=None Multiclass only. List of labels to index ``y_score`` used for multiclass. If ``None``, the lexical order of ``y_true`` is used to index ``y_score``. Returns ------- auc : float or dict (if ``multi_class`` is ``'ovo'`` or ``'ovr'``) AUC of the ROC curves. If ``multi_class`` is ``'ovr'``, then returns an array of shape ``(n_classes,)`` such that each element corresponds to the AUC of the ROC curve for a specific class. If ``multi_class`` is ``'ovo'``, then returns a dict where the keys are ``(i, j)`` tuples and the values are the AUCs of the ROC curve for the binary problem of predicting class ``i`` vs. class ``j``. See also -------- roc_curve : Compute Receiver operating characteristic (ROC) curve. roc_auc : Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores Examples -------- >>> import numpy as np >>> from sklearn.metrics import roc_auc_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> roc_auc_score(y_true, y_scores) 0.75 >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]) >>> roc_auc_score(y_true, y_scores, multi_class='ovo') 0.6666666666666667 >>> roc_auc_score(y_true, y_scores[:, 1]) 0.75 """ # validation of the input y_score if not (y_true.shape == y_score.shape): raise ValueError("y_true and y_score have different shape.") if (not is_multilabel(y_true) and not is_multiclass(y_true)): # roc_auc_score only supports binary and multiclass classification # for the time being if len(np.unique(y_true)) == 2: # Only one class present in y_true. ROC AUC score is not defined # in that case. Note that raising an error is consistent with the # deprecated roc_auc_score behavior. raise ValueError( "ROC AUC score is not defined in that case: " "y_true contains only one label ({0}).".format( format_label(y_true[0]) ) ) else: raise ValueError( "ROC AUC score is not defined in that case: " "y_true has {0} unique labels. ".format(len(np.unique(y_true))) + "ROC AUC score is defined only for binary or multiclass " "classification where the number of classes is greater than " "one." ) if multi_class == 'raise': raise ValueError("multi_class must be in ('ovo', 'ovr')") elif multi_class == 'ovo': if is_multilabel(y_true): # check if max_fpr is valid in this case if max_fpr is not None and (max_fpr == 0 or max_fpr > 1): raise ValueError("Expected max_fpr in range (0, 1], got: %f" % max_fpr) return _multiclass_roc_auc_score_ovr(y_true, y_score, average, sample_weight, max_fpr=max_fpr) else: return _binary_roc_auc_score(y_true, y_score, average, sample_weight, max_fpr=max_fpr) elif multi_class == 'ovr': if is_multilabel(y_true): return _multilabel_roc_auc_score_ovr(y_true, y_score, average, sample_weight) else: return _multiclass_roc_auc_score_ovr(y_true, y_score, average, sample_weight, labels=labels) else: raise ValueError("Invalid multi_class parameter: {0}".format(multi_class)) ``` 这段代码实现了计算ROC AUC的功能,支持二元、多类和多标签分类。其中,分为'ovo'和'ovr'两种多类模式,'ovo'表示一对一,'ovr'表示一对多。
阅读全文

相关推荐

大家在看

recommend-type

MotorContral.rar_VC++ 电机控制_上位机_电机_电机 上位机_电机vc上位机

这是电机控制方面上位机程序,需要vc++6.0开发,对学习电机控制很有帮助.
recommend-type

一种基于STM32的智能交通信号灯设计的研究.rar

一种基于STM32的智能交通信号灯设计的研究.rar
recommend-type

台达变频器资料.zip

台达变频器
recommend-type

【管道瞬变流】特征线法管道瞬变流计算【含Matlab源码 2773期】.zip

Matlab领域上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、物理应用 仿真:导航、地震、电磁、电路、电能、机械、工业控制、水位控制、直流电机、平面电磁波、管道瞬变流、刚度计算 光学:光栅、杨氏双缝、单缝、多缝、圆孔、矩孔衍射、夫琅禾费、干涉、拉盖尔高斯、光束、光波、涡旋 定位问题:chan、taylor、RSSI、music、卡尔曼滤波UWB 气动学:弹道、气体扩散、龙格库弹道 运动学:倒立摆、泊车 天体学:卫星轨道、姿态 船舶:控制、运动 电磁学:电场分布、电偶极子、永磁同步、变压器
recommend-type

【答题卡识别】 Hough变换答题卡识别【含Matlab源码 250期】.zip

Matlab领域上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别

最新推荐

recommend-type

复杂网络社区挖掘_改进的层次聚类算法

社交网络分析是复杂网络分析的一个分支,其中Ego Networks是一种特殊形式,有一个中心节点(ego),所有其他节点(称为alters)都直接与中心节点相连,alter之间也存在边。社会学理论指出,关系紧密的角色之间相似度...
recommend-type

carsim,simulink联合仿真,自动驾驶基于mpc自定义期望速度跟踪控制,可以在外部自定义期望速度传入sfunction函数,设置了两个不同状态方程,控制量为加速度,加速度变化量提供进行对比

carsim,simulink联合仿真,自动驾驶基于mpc自定义期望速度跟踪控制,可以在外部自定义期望速度传入sfunction函数,设置了两个不同状态方程,控制量为加速度,加速度变化量提供进行对比,carsim2019
recommend-type

matlab实现阿基米德算法AOA求解零空闲流水车间调度问题NIFSP-阿基米德算法-流水车间调度-NIFSP-matlab

内容概要:本文介绍了一种基于阿基米德优化算法(AOA)的零空闲流水车间调度问题(NIFSP)的求解方法。阿基米德优化算法(AOA)模拟古希腊数学家阿基米德螺旋思想,通过模拟浮力和杠杆原理进行全局搜索和局部寻优。实验结果显示,AOA算法在NIFSP中有较好的表现,能有效降低加工时间和提高流水线效率。 适合人群:对智能制造和调度优化有兴趣的研究人员和工程技术人员。 使用场景及目标:用于制造业和其他相关行业中,解决零空闲流水车间调度的问题,从而优化生产效率和降低制造成本。 其他说明:该论文提供了完整的算法原理、实现步骤以及MATLAB实现的详细代码,方便读者理解和复现研究结果。文中还讨论了AOA算法的优越性及未来改进方向,为今后的研究提供了参考依据。
recommend-type

递进关系-关系图表-多彩微软风-5.pptx

递进关系-关系图表-多彩微软风-5
recommend-type

条形图-数据图表-简约扁平-3.pptx

图表分类ppt
recommend-type

租赁合同编写指南及下载资源

资源摘要信息:《租赁合同》是用于明确出租方与承租方之间的权利和义务关系的法律文件。在实际操作中,一份详尽的租赁合同对于保障交易双方的权益至关重要。租赁合同应当包括但不限于以下要点: 1. 双方基本信息:租赁合同中应明确出租方(房东)和承租方(租客)的名称、地址、联系方式等基本信息。这对于日后可能出现的联系、通知或法律诉讼具有重要意义。 2. 房屋信息:合同中需要详细说明所租赁的房屋的具体信息,包括房屋的位置、面积、结构、用途、设备和家具清单等。这些信息有助于双方对租赁物有清晰的认识。 3. 租赁期限:合同应明确租赁开始和结束的日期,以及租期的长短。租赁期限的约定关系到租金的支付和合同的终止条件。 4. 租金和押金:租金条款应包括租金金额、支付周期、支付方式及押金的数额。同时,应明确规定逾期支付租金的处理方式,以及押金的退还条件和时间。 5. 维修与保养:在租赁期间,房屋的维护和保养责任应明确划分。通常情况下,房东负责房屋的结构和主要设施维修,而租客需负责日常维护及保持房屋的清洁。 6. 使用与限制:合同应规定承租方可以如何使用房屋以及可能的限制。例如,禁止非法用途、允许或禁止宠物、是否可以转租等。 7. 终止与续租:租赁合同应包括租赁关系的解除条件,如提前通知时间、违约责任等。同时,双方可以在合同中约定是否可以续租,以及续租的条件。 8. 解决争议的条款:合同中应明确解决可能出现的争议的途径,包括适用法律、管辖法院等,有助于日后纠纷的快速解决。 9. 其他可能需要的条款:根据具体情况,合同中可能还需要包括关于房屋保险、税费承担、合同变更等内容。 下载资源链接:【下载自www.glzy8.com管理资源吧】Rental contract.DOC 该资源为一份租赁合同模板,对需要进行房屋租赁的个人或机构提供了参考价值。通过对合同条款的详细列举和解释,该文档有助于用户了解和制定自己的租赁合同,从而在房屋租赁交易中更好地保护自己的权益。感兴趣的用户可以通过提供的链接下载文档以获得更深入的了解和实际操作指导。
recommend-type

【项目管理精英必备】:信息系统项目管理师教程习题深度解析(第四版官方教材全面攻略)

![信息系统项目管理师教程-第四版官方教材课后习题-word可编辑版](http://www.bjhengjia.net/fabu/ewebeditor/uploadfile/20201116152423446.png) # 摘要 信息系统项目管理是确保项目成功交付的关键活动,涉及一系列管理过程和知识领域。本文深入探讨了信息系统项目管理的各个方面,包括项目管理过程组、知识领域、实践案例、管理工具与技术,以及沟通和团队协作。通过分析不同的项目管理方法论(如瀑布、迭代、敏捷和混合模型),并结合具体案例,文章阐述了项目管理的最佳实践和策略。此外,本文还涵盖了项目管理中的沟通管理、团队协作的重要性,
recommend-type

最具代表性的改进过的UNet有哪些?

UNet是一种广泛用于图像分割任务的卷积神经网络结构,它的特点是结合了下采样(编码器部分)和上采样(解码器部分),能够保留细节并生成精确的边界。为了提高性能和适应特定领域的需求,研究者们对原始UNet做了许多改进,以下是几个最具代表性的变种: 1. **DeepLab**系列:由Google开发,通过引入空洞卷积(Atrous Convolution)、全局平均池化(Global Average Pooling)等技术,显著提升了分辨率并保持了特征的多样性。 2. **SegNet**:采用反向传播的方式生成全尺寸的预测图,通过上下采样过程实现了高效的像素级定位。 3. **U-Net+
recommend-type

惠普P1020Plus驱动下载:办公打印新选择

资源摘要信息: "最新惠普P1020Plus官方驱动" 1. 惠普 LaserJet P1020 Plus 激光打印机概述: 惠普 LaserJet P1020 Plus 是惠普公司针对家庭、个人办公以及小型办公室(SOHO)市场推出的一款激光打印机。这款打印机的设计注重小巧体积和便携操作,适合空间有限的工作环境。其紧凑的设计和高效率的打印性能使其成为小型企业或个人用户的理想选择。 2. 技术特点与性能: - 预热技术:惠普 LaserJet P1020 Plus 使用了0秒预热技术,能够极大减少打印第一张页面所需的等待时间,首页输出时间不到10秒。 - 打印速度:该打印机的打印速度为每分钟14页,适合处理中等规模的打印任务。 - 月打印负荷:月打印负荷高达5000页,保证了在高打印需求下依然能稳定工作。 - 标配硒鼓:标配的2000页打印硒鼓能够为用户提供较长的使用周期,减少了更换耗材的频率,节约了长期使用成本。 3. 系统兼容性: 驱动程序支持的操作系统包括 Windows Vista 64位版本。用户在使用前需要确保自己的操作系统版本与驱动程序兼容,以保证打印机的正常工作。 4. 市场表现: 惠普 LaserJet P1020 Plus 在上市之初便获得了市场的广泛认可,创下了百万销量的辉煌成绩,这在一定程度上证明了其可靠性和用户对其性能的满意。 5. 驱动程序文件信息: 压缩包内包含了适用于该打印机的官方驱动程序文件 "lj1018_1020_1022-HB-pnp-win64-sc.exe"。该文件是安装打印机驱动的执行程序,用户需要下载并运行该程序来安装驱动。 另一个文件 "jb51.net.txt" 从命名上来看可能是一个文本文件,通常这类文件包含了关于驱动程序的安装说明、版本信息或是版权信息等。由于具体内容未提供,无法确定确切的信息。 6. 使用场景: 由于惠普 LaserJet P1020 Plus 的打印速度和负荷能力,它适合那些需要快速、频繁打印文档的用户,例如行政助理、会计或小型法律事务所。它的紧凑设计也使得这款打印机非常适合在桌面上使用,从而不占用过多的办公空间。 7. 后续支持与维护: 用户在购买后可以通过惠普官方网站获取最新的打印机驱动更新以及技术支持。在安装新驱动之前,建议用户先卸载旧的驱动程序,以避免版本冲突或不必要的错误。 8. 其它注意事项: - 用户在使用打印机时应注意按照官方提供的维护说明定期进行清洁和保养,以确保打印质量和打印机的使用寿命。 - 如果在打印过程中遇到任何问题,应先检查打印机设置、驱动程序是否正确安装以及是否有足够的打印纸张和墨粉。 综上所述,惠普 LaserJet P1020 Plus 是一款性能可靠、易于使用的激光打印机,特别适合小型企业或个人用户。正确的安装和维护可以确保其稳定和高效的打印能力,满足日常办公需求。
recommend-type

数字电路实验技巧:10大策略,让你的实验效率倍增!

![数字电路实验技巧:10大策略,让你的实验效率倍增!](https://avatars.dzeninfra.ru/get-zen_doc/3964212/pub_5f76d5f2109e8f703cdee289_5f76f3c10d5f8951c997167a/scale_1200) # 摘要 本论文详细介绍了数字电路实验的基础理论、设备使用、设计原则、实践操作、调试与故障排除以及报告撰写与成果展示。首先探讨了数字电路实验所需的基本理论和实验设备的种类与使用技巧,包括测量和故障诊断方法。接着,深入分析了电路设计的原则,涵盖设计流程、逻辑简化、优化策略及实验方案的制定。在实践操作章节中,具体