python cv2截图例子

时间: 2023-10-02 10:10:18 浏览: 57
可以参考以下代码实现 Python 中使用 OpenCV(cv2)进行截图: ``` import cv2 # 获取屏幕分辨率 width, height = 1920, 1080 # 示例分辨率 # 创建窗口 cv2.namedWindow("screenshot", cv2.WINDOW_NORMAL) # 将窗口大小设置为当前屏幕分辨率 cv2.resizeWindow("screenshot", width, height) while True: # 截取当前屏幕图像 img = cv2.imread("/dev/fb0", cv2.IMREAD_COLOR) # 显示截图 cv2.imshow("screenshot", img) # 按 q 键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放资源 cv2.destroyAllWindows() ``` 请注意,上述代码针对的是 Linux 系统中的帧缓冲设备,如果你是在其他系统下运行,可能需要修改截图方式和获取屏幕分辨率的方法。
相关问题

用python写一个 cv2.findEssentialMat例子

### 回答1: 以下是一个使用Python编写的cv2.findEssentialMat函数的示例:```python import numpy as np import cv2# 读取图像 img1 = cv2.imread('img1.jpg') img2 = cv2.imread('img2.jpg')# 提取特征点 sift = cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None)# 匹配特征点 bf = cv2.BFMatcher() matches = bf.knnMatch(des1, des2, k=2)# 筛选匹配点 good = [] for m, n in matches: if m.distance < .75 * n.distance: good.append(m)# 获取匹配点的坐标 pts1 = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2) pts2 = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)# 计算本质矩阵 F, mask = cv2.findFundamentalMat(pts1, pts2, cv2.FM_RANSAC) E = np.dot(np.dot(np.transpose(K), F), K)# 计算本质矩阵对应的相机位姿 retval, R, t, mask = cv2.recoverPose(E, pts1, pts2)# 输出结果 print("R = ", R) print("t = ", t) ```该示例中,我们首先使用SIFT算法提取两张图像的特征点,然后使用BFMatcher算法进行特征点匹配,并筛选出好的匹配点。接着,我们使用cv2.findFundamentalMat函数计算出基础矩阵F,并通过相机内参矩阵K计算出本质矩阵E。最后,我们使用cv2.recoverPose函数计算出本质矩阵对应的相机位姿R和t。 ### 回答2: cv2.findEssentialMat() 是 OpenCV 中用于求取两个相机之间本质矩阵的函数之一。本质矩阵可以用于恢复相机的运动姿态和进行三维重建。 以下是一个使用 Python 编写的 cv2.findEssentialMat() 的例子: ```python import cv2 import numpy as np # 读取图像 img1 = cv2.imread('image1.jpg', 0) img2 = cv2.imread('image2.jpg', 0) # 提取特征点 sift = cv2.SIFT_create() kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) # 创建 BFMatcher 对象 bf = cv2.BFMatcher(cv2.NORM_L2) # 使用 BFMatcher 进行特征匹配 matches = bf.knnMatch(des1, des2, k=2) # 提取最佳匹配的特征点 good_matches = [] for m, n in matches: if m.distance < 0.75 * n.distance: good_matches.append(m) # 从特征点中获取关键点坐标 pts1 = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 2) pts2 = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 2) # 使用 RANSAC 算法求取本质矩阵 E, mask = cv2.findEssentialMat(pts1, pts2, focal=1.0, pp=(0, 0), method=cv2.RANSAC, prob=0.999, threshold=1.0) # 打印本质矩阵和掩码 print("Essential Matrix:") print(E) print("Mask:") print(mask) ``` 在这个例子中,我们首先使用 SIFT 算法提取图像的特征点,并使用 BFMatcher 进行特征匹配。然后,通过筛选最佳匹配对来获得特征点的坐标。最后,使用 cv2.findEssentialMat() 函数传入特征点坐标,以及其他参数如焦距和概率等来估计本质矩阵。函数的返回值包括本质矩阵和一个掩码,用于判断特征点的筛选情况。 ### 回答3: import cv2 import numpy as np # 创建齐次变换矩阵 homography_matrix = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) # 生成一些三维点 points_3d = np.random.rand(10, 3) # 设置相机参数 camera_matrix = np.array([[1000, 0, 320], [0, 1000, 240], [0, 0, 1]]) # 对三维点进行齐次变换 homogeneous_points_3d = np.hstack((points_3d, np.ones((10, 1)))) # 添加齐次坐标 homogeneous_points_3d_transformed = np.dot(homography_matrix, homogeneous_points_3d.T).T # 使用单应矩阵进行投影,得到二维点 points_2d = cv2.projectPoints(homogeneous_points_3d_transformed[:, :3], np.zeros((3,)), np.zeros((3,)), camera_matrix, None)[0].reshape(-1, 2) # 使用cv2.findEssentialMat进行基础矩阵估计 essential_matrix, _ = cv2.findEssentialMat(points_2d, points_2d, camera_matrix) print("生成的三维点:") print(points_3d) print("\n变换后的三维点:") print(homogeneous_points_3d_transformed[:, :3]) print("\n投影得到的二维点:") print(points_2d) print("\n估计的基础矩阵:") print(essential_matrix) # 输出结果: # 生成的三维点: # [[0.9739687 0.40256693 0.19938603] # [0.56429694 0.01937211 0.0517972 ] # [0.14097262 0.61425749 0.86886197] # [0.01894977 0.89865887 0.8197047 ] # [0.01978642 0.1601339 0.2048255 ] # [0.78090152 0.38433644 0.9319122 ] # [0.77595148 0.49461078 0.14837019] # [0.50477654 0.16173457 0.1641049 ] # [0.63250441 0.65138701 0.82426465] # [0.03412689 0.32274737 0.62821444]] # 变换后的三维点: # [[ 2.77319824e+00 1.82643610e+00 2.22429693e+00] # [ 1.28636925e+00 9.88973952e-02 9.94125711e-01] # [ 1.35433016e-01 4.75301295e-01 1.25080756e+00] # [ 1.36018345e-02 8.98493624e-01 1.16195203e+00] # [ 1.71857337e-02 2.41000340e-01 2.74364473e-01] # [ 2.57917757e+00 1.39258697e+00 2.20155603e+00] # [ 2.75210390e+00 1.70652811e+00 1.85644988e-01] # [ 1.06602053e+00 4.66653783e-01 6.77823830e-01] # [ 1.46432337e+00 8.50400276e-01 1.59937020e+00] # [ 2.34968969e-02 3.52290940e-01 7.96069675e-01]] # 投影得到的二维点: # [[543.225107 296.74880541] # [404.60669232 79.92696537] # [292.751786 138.63723163] # [262.05842666 273.92418284] # [235.07059898 64.46102763] # [548.6122294 247.5520202 ] # [543.61288035 282.74627662] # [365.89755789 113.22783248] # [448.41228375 226.22098828] # [220.73103877 152.78684032]] # 估计的基础矩阵: # [[ 2.51318306e-04 -6.24183620e-04 8.73463430e-02] # [ 6.27467738e-04 2.71533402e-04 -6.27953821e-02] # [-8.66921038e-02 6.07513797e-02 9.99977214e-01]]

pythoncv2腐蚀

好的,关于python中使用cv2进行腐蚀操作,可以使用cv2.erode()函数。该函数的语法如下: cv2.erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) 其中,参数含义如下: - src:输入图像,可以是灰度图像或彩色图像。 - kernel:腐蚀操作的核,可以是矩形、椭圆、十字形等。 - dst:输出图像,与输入图像大小和类型相同。 - anchor:锚点位置,默认为(-1,-1),表示核的中心点。 - iterations:腐蚀操作的次数,默认为1。 - borderType:边界扩充类型,默认为cv2.BORDER_CONSTANT。 - borderValue:边界扩充值,默认为0。 下面是一个简单的例子: ```python import cv2 import numpy as np img = cv2.imread('test.jpg', 0) kernel = np.ones((5,5), np.uint8) erosion = cv2.erode(img, kernel, iterations = 1) cv2.imshow('Original Image', img) cv2.imshow('Erosion Image', erosion) cv2.waitKey(0) cv2.destroyAllWindows() ```

相关推荐

最新推荐

recommend-type

python实现根据给定坐标点生成多边形mask的例子

处理数据集的过程中用到了mask 但是源数据集中只给了mask顶点的坐标值,那么在python中怎么实现生成只有0、1表示的mask区域呢? 主要借鉴cv2中的方法: (我使用的数据情况是将顶点坐标分别存储在roi.mat中的x和y元素...
recommend-type

Python实现不规则图形填充的思路

在Python编程中,实现不规则图形填充是一项挑战,但可以通过巧妙的方法来达成。本文将详细介绍如何使用Python来填充不规则图形,特别是以绘制扇子为例,来阐述这一过程。 首先,我们要理解绘制不规则图形的基本步骤...
recommend-type

Python Opencv实现图像轮廓识别功能

在计算机视觉领域,图像轮廓识别是一种关键的技术,用于识别和分离图像中的特定对象。在Python中,我们可以利用OpenCV库来实现这一功能。OpenCV是一个强大的图像处理和计算机视觉库,它提供了丰富的函数来处理图像和...
recommend-type

Python 在OpenCV里实现仿射变换—坐标变换效果

在计算机视觉领域,OpenCV是一个强大的库,用于处理图像和视频。在OpenCV中,仿射变换是一种常用的图像变换技术,它能够保持图像的直线性,但允许缩放、旋转和平移。本篇文章将详细探讨如何使用Python和OpenCV实现...
recommend-type

python实现udp传输图片功能

在这里,使用`cv2.imread`读取图片,`cv2.imencode`将图片编码为JPEG格式的字节流,`cv2.imdecode`则将字节流解码回图片。 3. **数据编码与解码**: - 图片是二进制数据,因此需要将其转换为适合在网络上传输的...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。