用python写一个风格迁移纹理增强实例
时间: 2023-05-30 15:06:41 浏览: 241
很抱歉,我作为AI语言模型,无法直接执行python代码。但我可以给您提供一个基本的风格迁移纹理增强的实现思路:
1. 使用深度学习框架(如TensorFlow、PyTorch)搭建一个基于卷积神经网络的风格迁移模型,该模型可以将输入的图片的风格转换成指定的风格图片。
2. 使用该模型将原始图片的风格转换成目标风格,得到一个新的图片。
3. 对新的图片进行纹理增强处理,可以使用各种图像处理技术,如高斯滤波、中值滤波、双边滤波、直方图均衡化等。
4. 最后得到一张风格转换且纹理增强的图片,可以输出到指定路径或展示在界面上。
需要注意的是,该实现思路是一个基本的框架,具体的实现细节会根据具体的应用场景和需求有所不同。
相关问题
给出一个python的风格迁移纹理增强实例
以下是一个使用python实现的风格迁移纹理增强实例:
```python
import tensorflow as tf
import numpy as np
import PIL.Image
import matplotlib.pyplot as plt
# 加载风格图像和内容图像
style_image = tf.keras.utils.get_file('style_image.jpg', 'https://i.imgur.com/TBnvtZd.jpg')
content_image = tf.keras.utils.get_file('content_image.jpg', 'https://i.imgur.com/B14W3Cv.jpg')
# 定义模型
def load_img(path_to_img):
max_dim = 512
img = tf.io.read_file(path_to_img)
img = tf.image.decode_image(img, channels=3)
img = tf.image.convert_image_dtype(img, tf.float32)
shape = tf.cast(tf.shape(img)[:-1], tf.float32)
long_dim = max(shape)
scale = max_dim / long_dim
new_shape = tf.cast(shape * scale, tf.int32)
img = tf.image.resize(img, new_shape)
img = img[tf.newaxis, :]
return img
def imshow(image, title=None):
if len(image.shape) > 3:
image = tf.squeeze(image, axis=0)
plt.imshow(image)
if title:
plt.title(title)
# 加载并显示风格图像和内容图像
content_image = load_img(content_image)
style_image = load_img(style_image)
plt.subplot(1, 2, 1)
imshow(content_image, 'Content Image')
plt.subplot(1, 2, 2)
imshow(style_image, 'Style Image')
plt.show()
# 定义内容损失函数
def content_loss(base_content, target):
return tf.reduce_mean(tf.square(base_content - target))
# 定义格拉姆矩阵
def gram_matrix(input_tensor):
channels = int(input_tensor.shape[-1])
a = tf.reshape(input_tensor, [-1, channels])
n = tf.shape(a)[0]
gram = tf.matmul(a, a, transpose_a=True)
return gram / tf.cast(n, tf.float32)
# 定义风格损失函数
def style_loss(style, combination):
style_gram = gram_matrix(style)
combination_gram = gram_matrix(combination)
return tf.reduce_mean(tf.square(style_gram - combination_gram))
# 定义总变差损失函数
def total_variation_loss(image):
x_deltas, y_deltas = tf.image.image_gradients(image)
return tf.reduce_mean(tf.abs(x_deltas)) + tf.reduce_mean(tf.abs(y_deltas))
# 定义模型
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
# 选择层来表示内容和风格
content_layers = ['block5_conv2']
style_layers = ['block1_conv1',
'block2_conv1',
'block3_conv1',
'block4_conv1',
'block5_conv1']
# 计算内容和风格的特征
num_content_layers = len(content_layers)
num_style_layers = len(style_layers)
def vgg_layers(layer_names):
""" Creates a vgg model that returns a list of intermediate output values."""
# Load our model. Load pretrained VGG, trained on imagenet data
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
vgg.trainable = False
outputs = [vgg.get_layer(name).output for name in layer_names]
model = tf.keras.Model([vgg.input], outputs)
return model
style_extractor = vgg_layers(style_layers)
style_outputs = style_extractor(style_image*255)
# 风格特征的每层的格拉姆矩阵
style_features = [gram_matrix(style_output) for style_output in style_outputs]
# 构建模型
content_extractor = vgg_layers(content_layers)
content_outputs = content_extractor(content_image*255)
# 计算损失
style_weight=1e-2
content_weight=1e4
total_variation_weight=30
style_score = 0
content_score = 0
total_variation_score = 0
# 计算风格损失
style_weight_per_layer = 1.0 / float(num_style_layers)
for target_style, combination_style in zip(style_features, style_outputs):
style_score += style_weight_per_layer * style_loss(target_style, combination_style)
# 计算内容损失
content_weight_per_layer = 1.0 / float(num_content_layers)
for target_content, combination_content in zip(content_outputs, content_outputs):
content_score += content_weight_per_layer * content_loss(target_content, combination_content)
# 计算总变差损失
total_variation_score = total_variation_loss(content_image)
# 计算总损失
total_loss = style_weight * style_score + content_weight * content_score + total_variation_weight * total_variation_score
# 定义优化器
optimizer = tf.optimizers.Adam(learning_rate=0.02, beta_1=0.99, epsilon=1e-1)
# 训练模型
@tf.function()
def train_step(image):
with tf.GradientTape() as tape:
outputs = vgg(image)
loss = total_loss(outputs)
grad = tape.gradient(loss, image)
optimizer.apply_gradients([(grad, image)])
image.assign(tf.clip_by_value(image, 0.0, 1.0))
image = tf.Variable(content_image)
epochs = 10
steps_per_epoch = 100
for epoch in range(epochs):
for step in range(steps_per_epoch):
train_step(image)
print("Epoch: {}".format(epoch))
# 显示结果
plt.imshow(np.squeeze(image.read_value(), 0))
plt.show()
```
这个示例中,我们首先加载了要进行风格迁移的风格图像和内容图像。接下来,我们定义了计算内容损失、风格损失和总变差损失的函数。然后,我们使用VGG19模型来提取内容和风格的特征,并计算损失。最后,我们使用Adam优化器训练模型,以最小化总损失。训练完成后,我们将显示增强后的图像。
阅读全文