static const struct gpio leds[] = { { 23, SFN_OUT, "LED_RED" }, { 22, SFN_OUT, "LED_GREEN" }, { 27, SFN_OUT, "LED_BLUE" }, }; static int LED_major = LED_MAJOR; struct resource *IO_mem_resource; static struct class *led_class; unsigned long io_addr;

时间: 2024-04-04 14:33:33 浏览: 164
这段代码是定义了三个GPIO引脚并分别命名为LED_RED、LED_GREEN和LED_BLUE,然后定义了LED_major变量、IO_mem_resource变量、led_class变量和io_addr变量。 GPIO引脚是通用输入输出引脚,可以通过软件控制其输入和输出状态。在这个驱动程序中,定义了三个GPIO引脚,分别用于控制红色LED、绿色LED和蓝色LED的亮灭。 其中,struct gpio结构体表示一个GPIO引脚,包括引脚编号、引脚功能模式和引脚名称等信息。leds数组定义了三个struct gpio结构体,分别对应三个LED引脚。 LED_major变量表示设备主设备号,用于标识该设备的类型。在Linux内核中,设备文件名通常由主设备号和次设备号组成。 IO_mem_resource变量用于保存LED设备的物理地址空间和中断资源信息。在Linux内核中,设备的物理地址空间和中断资源通常由resource结构体描述。 led_class变量是一个指向struct class结构体的指针,用于创建和管理设备类(class)。设备类是一组具有相似特性的设备的集合,可以通过设备类来方便地管理这些设备。 io_addr变量用于保存LED设备的物理地址空间的起始地址。在Linux内核中,设备的物理地址空间通常被映射到内核地址空间或用户地址空间中,以便访问和控制设备。
相关问题

static const struct gpio relays[] = { { 21, GPIOF_OUT_INIT_HIGH, "RELAY_BLUE" }, };

这段代码定义了一个名为relays的结构体数组,用于表示一个GPIO控制的继电器设备。 该结构体数组中包含了一个struct gpio类型的元素,表示一个GPIO控制的继电器设备。其中,21表示GPIO的编号,GPIOF_OUT_INIT_HIGH表示GPIO的初始状态为高电平输出,"RELAY_BLUE"表示该GPIO设备的名字为RELAY_BLUE。 在Linux内核中,GPIO(General Purpose Input/Output)是一种通用的输入输出接口,用于与外部设备进行交互。GPIO接口通常用于控制各种外设,如LED、继电器、传感器等,可以通过软件编程的方式来实现对外设的控制。 在本代码中,relays数组表示一个GPIO控制的继电器设备,其中的21是该设备的GPIO编号,GPIOF_OUT_INIT_HIGH表示该设备的初始状态为高电平输出,"RELAY_BLUE"是该设备的名字。在使用该设备时,可以通过向GPIO口写入不同的值来实现对继电器的控制。

static const struct vframe_receiver_op_s video_vf_receiver = { .event_cb = video_receiver_event_fun };

这是一个结构体变量 video_vf_receiver 的初始化,该结构体中有一个成员变量 event_cb,它的值是函数指针 video_receiver_event_fun。在某些程序中,结构体变量的成员变量需要指向一个函数以实现特定的功能,因此使用函数指针作为成员变量的值。这里的 vframe_receiver_op_s 可能是一个结构体类型的定义。
阅读全文

相关推荐

#include "dht11.h" void Delay_us(uint16_t delay) { __HAL_TIM_DISABLE(&htim3); __HAL_TIM_SET_COUNTER(&htim3,0); __HAL_TIM_ENABLE(&htim3); uint16_t curCnt=0; while(1) { curCnt=__HAL_TIM_GET_COUNTER(&htim3); if(curCnt>=delay) break; } __HAL_TIM_DISABLE(&htim3); } void DHT11_OUT(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } void DHT11_IN(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } void DHT11_Strat(void) { DHT11_OUT(); HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_RESET); HAL_Delay(20); HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_SET); Delay_us(30); } uint8_t DHT11_Check(void) { uint8_t retry = 0 ; DHT11_IN(); while(GPIO_PIN_SET == HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8) && retry <100) { retry++; Delay_us(1);//1us } if(retry>=100) {return 1;} else retry = 0 ; while(GPIO_PIN_RESET == HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8) && retry<100) { retry++; Delay_us(1);//1us } if(retry>=100) {return 1;} return 0 ; } uint8_t DHT11_Read_Bit(void) { uint8_t retry = 0 ; while(GPIO_PIN_SET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) && retry <100) { retry++; Delay_us(1); } retry = 0 ; while(GPIO_PIN_RESET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) && retry<100) { retry++; Delay_us(1); } Delay_us(40); if(GPIO_PIN_SET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8)) return 1; else return 0 ; } uint8_t DHT11_Read_Byte(void) { uint8_t i , dat ; dat = 0 ; for(i=0; i<8; i++) { dat <<= 1; dat |= DHT11_Read_Bit(); } return dat ; } uint8_t DHT11_Read_Data(uint8_t* temp , uint8_t* humi) { uint8_t buf[5]; uint8_t i; DHT11_Strat(); if(DHT11_Check() == 0) { for(i=0; i<5; i++) { buf[i] = DHT11_Read_Byte(); } if(buf[0]+buf[1]+buf[2]+buf[3] == buf[4]) { *humi = buf[0]; *temp = buf[2]; } }else return 1; return 0 ; } void func_1() { uint8_t temperature = 1 ; uint8_t humidity = 1; uint8_t aTXbuf[32] ; while(1){ DHT11_Read_Data(&temperature , &humidity); sprintf((char*)aTXbuf,"%d , %d %% \r\n" ,temperature ,humidity); HAL_UART_Transmit(&huart1, aTXbuf, strlen((const char*)aTXbuf), 200); HAL_Delay(5000); } } int temperature_humidity_device_control(protocol_package_t *pk) { printf("temperature_humidity_device_control\r\n"); if(pk->function == 0x16 && pk->data[0] == 0x00) { printf("temperature_humidity_device_control success\r\n"); uint8_t temperature = 1 ; uint8_t humidity = 1; uint8_t aTXbuf[32] ; //DHT11_Read_Data(&temperature , &humidity); pk->data[0] = 0x35; } return 0; }改错

最新推荐

recommend-type

linux创建线程之pthread_create的具体使用

int pthread_create(pthread_t *restrict tidp, const pthread_attr_t *restrict attr, void *(*start_rtn)(void*), void *restrict arg); ``` 1. `tidp`: 这是第一个参数,类型为`pthread_t`的指针,用于接收新...
recommend-type

详细解析命令行的getopt_long()函数

int getopt_long(int argc, char * const argv[], const char *optstring, const struct option *longopts, int *longindex); ``` - `argc`: 命令行参数的计数,通常从 `main()` 函数的 `argc` 参数传递。 - `argv`...
recommend-type

Linux中mkdir函数与Windows中_mkdir函数的区别

int mkdir(const char *pathname, mode_t mode); ``` 这里的`pathname`参数是待创建目录的路径名,而`mode`则是一个整型变量,用于指定新创建目录的权限。`mode`可以设置各种权限,包括文件所有者的读、写、执行...
recommend-type

C++标准库:std_set作为一个有序集合

3. 查找元素:使用find函数可以在集合中查找元素,例如`std::set&lt;int&gt;::const_iterator result = set.find(98)`。 4. 交换集合:使用std::swap函数可以交换两个集合的内容,例如`std::swap(set, other)`。 5. 清楚...
recommend-type

关于事件mouseover ,mouseout ,mouseenter,mouseleave的区别

`mouseover`, `mouseout`, `mouseenter`, 和 `mouseleave` 是四个常见的鼠标事件,它们都与鼠标的移动有关,但触发条件有所不同。理解这些事件的区别对于编写无闪烁、响应良好的用户界面至关重要。 1. `mouseover` ...
recommend-type

C语言数组操作:高度检查器编程实践

资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧

![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
recommend-type

如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?

要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
recommend-type

基于Swift开发的嘉定单车LBS iOS应用项目解析

资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。