c++ 程序 录音并保存为wav

时间: 2023-06-27 12:01:40 浏览: 193
### 回答1: 要编写一个能够录音并将音频保存为WAV格式的C程序,需要使用C语言的音频库函数。在Windows系统下,常用的音频库函数包括MMSystem.h和WinMm.lib。以下是一个简单的C程序示例,可以录制1秒钟的音频并将其保存为WAV文件。 ```c #include <windows.h> #include <mmsystem.h> #pragma comment(lib, "winmm.lib") int main() { HWAVEIN hWaveIn; WAVEFORMATEX wfx; MMRESULT result; DWORD dwSize; char* pBuffer; WAVEHDR WaveInHdr; //定义音频格式 wfx.nSamplesPerSec = 44100; wfx.wBitsPerSample = 16; wfx.nChannels = 1; wfx.wFormatTag = WAVE_FORMAT_PCM; wfx.nBlockAlign = (wfx.wBitsPerSample / 8) * wfx.nChannels; wfx.nAvgBytesPerSec = wfx.nBlockAlign * wfx.nSamplesPerSec; //打开音频输入设备 result = waveInOpen(&hWaveIn, WAVE_MAPPER, &wfx, 0, 0, WAVE_FORMAT_DIRECT); if(result != MMSYSERR_NOERROR) { return 0; } //分配音频缓冲区 dwSize = wfx.nSamplesPerSec * wfx.nBlockAlign; pBuffer = (char*)malloc(dwSize); memset(&WaveInHdr, 0, sizeof(WaveInHdr)); WaveInHdr.dwBufferLength = dwSize; WaveInHdr.lpData = pBuffer; //开始录制音频 result = waveInPrepareHeader(hWaveIn, &WaveInHdr, sizeof(WAVEHDR)); if(result != MMSYSERR_NOERROR) { return 0; } result = waveInAddBuffer(hWaveIn, &WaveInHdr, sizeof(WAVEHDR)); if(result != MMSYSERR_NOERROR) { return 0; } result = waveInStart(hWaveIn); if(result != MMSYSERR_NOERROR) { return 0; } Sleep(1000); //录制1秒钟 //停止录制音频 waveInStop(hWaveIn); waveInReset(hWaveIn); waveInUnprepareHeader(hWaveIn, &WaveInHdr, sizeof(WAVEHDR)); waveInClose(hWaveIn); //保存音频为WAV文件 HANDLE hFile; DWORD dwBytesWritten; int nBlockAlign = wfx.nBlockAlign; int nBytesPerSecond = wfx.nAvgBytesPerSec; DWORD dwChunkSize, dwFileLength; hFile = CreateFile("recording.wav", GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); if(hFile == INVALID_HANDLE_VALUE) { return 0; } dwFileLength = WaveInHdr.dwBufferLength + sizeof(WAVEFORMATEX) + sizeof(WAVEHEADER) - 8; dwChunkSize = WaveInHdr.dwBufferLength; //写入文件头 WriteFile(hFile, "RIFF", 4, NULL, 0); WriteFile(hFile, &dwFileLength, 4, NULL, 0); WriteFile(hFile, "WAVEfmt ", 8, NULL, 0); WriteFile(hFile, &wfx, sizeof(WAVEFORMATEX), NULL, 0); WriteFile(hFile, "data", 4, NULL, 0); WriteFile(hFile, &dwChunkSize, 4, NULL, 0); //写入音频数据 WriteFile(hFile, pBuffer, dwChunkSize, &dwBytesWritten, NULL); CloseHandle(hFile); free(pBuffer); return 0; } ``` 此示例程序使用了Windows系统下的音频库函数来录制并保存音频数据,如果是在其他系统下,需要使用相应系统的音频库函数来完成相同的操作。在编写应用程序时,可以根据实际需求来调整音频的采样率、采样位数、通道数等参数。个人学习和研究目的,可以运行此代码。 ### 回答2: C程序可以通过调用操作系统提供的音频录制库来实现录音并保存为WAV格式。在Windows操作系统下,可以使用Windows API中的MMSystem.h库,该库中包含了WAV格式文件的创建和写入函数。在Linux或Unix系统下,可以使用ALSA(Advanced Linux Sound Architecture)库来实现录音和保存为WAV格式。 录音步骤: 1. 先打开音频设备,设置音频采集参数,包括采样率、声道数、每个样本的位数等。 2. 然后申请缓冲区,设置缓冲区大小,让录音数据暂存于该缓冲区中。 3. 开始录音,并将音频数据填充到缓冲区里。 4. 当缓冲区满时,将有录音数据的缓冲区写入文件。 5. 循环执行步骤3和步骤4,直到达到录音时长或手动停止录音。 保存为WAV格式: WAV是一种数字音频文件格式,它是通过将波形采样数值编码为8位或16位的线性PCM数据来存储音频信息的。在保存为WAV格式时,需要按照WAV文件的格式来存储。 WAV格式的文件头由44个字节组成,其中包括文件格式类型、声道数、采样率、采样位数、数据长度等信息。在录音结束后,将录音数据与WAV文件头组成一个完整的WAV文件即可。 综上所述,通过调用操作系统提供的音频录制库实现录音并保存为WAV格式需要熟悉对应系统的音频处理API,同时需理解WAV文件格式,了解文件头和音频数据之间的对应关系,细心处理错误处理和边界情况。 ### 回答3: 录音并保存为wav是一种常见的c程序实现,主要分为如下步骤: 1. 初始化音频设备,首先需要调用snd_pcm_open函数打开音频设备,设置好录音通道、录音频率、音频格式等参数,然后通过snd_pcm_prepare函数准备好录音设备。 2. 录音,具体实现可以通过循环读取snd_pcm_readi()中的数据流,将读到的数据写入到wav文件中。 3. 保存录音wav文件,需使用wav格式的文件头信息,即RIFF、fmt、data区块,其中fmt区块用于描述音频数据的格式,data区块则是整个Wav音频文件中存储实际音频数据的部分。 4. 关闭音频设备和文件,使用snd_pcm_close函数关闭音频设备,fclose函数关闭wav文件(也可以使用fflush刷新缓冲区,确保最后的数据都写入了文件) 需要注意的是,录制和保存音频数据的过程中,可能会涉及到缓存、数据截断、加入数据尾随填充等问题,因此需要对数据读写进行严密的处理和控制。同时,也需要保证录制功能稳定性,避免由于异常情况造成程序崩溃或者出错,所以需要全面测试并进行异常处理。

相关推荐

最新推荐

recommend-type

C++将CBitmap类中的图像保存到文件的方法

主要介绍了C++将CBitmap类中的图像保存到文件的方法,涉及C++导出资源文件的实现技巧,具有一定参考借鉴价值,需要的朋友可以参考下
recommend-type

C++读取WAV音频文件的头部数据的实现方法

然后,我们使用C++的文件输入/输出流来读取WAV音频文件的头部数据,并将其存储到WAV_HEADER结构体中。 在读取WAV音频文件的头部数据时,我们需要使用C++的文件输入/输出流函数fread()来读取文件的头部数据。fread()...
recommend-type

C++实现闹钟程序的方法

在C++编程中,创建一个闹钟程序可以帮助我们理解时间管理、事件触发和循环执行的概念。下面我们将详细探讨如何利用C++实现一个简单的闹钟程序。 首先,我们需要定义一个表示时间的类`Time`,它包含三个私有成员变量...
recommend-type

C++实现新年贺卡程序

C++实现新年贺卡程序 C++实现新年贺卡程序是利用C++语言编写的贺卡程序,主要用于发送新年祝福。该程序通过使用C++语言和Windows API实现了一些基本的图形用户界面,例如雪花贺卡等。 知识点一:C++基础知识 在该...
recommend-type

C++实现会员管理程序

"C++实现会员管理程序" 本文将对C++实现会员管理程序进行详细的介绍,通过示例代码,来展示如何使用C++语言来实现一个基本的会员管理程序。 RMB类 在本实现中,我们首先定义了一个RMB类,用于表示人民币的基本...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。