采用胶囊网络分类mnist数据集 使用python并给出完整代码
时间: 2024-10-25 16:11:04 浏览: 61
胶囊网络(Capsule Network)是一种相对较新的深度学习模型,它尝试解决传统神经网络在处理物体识别中局部对齐的问题。在MNIST数据集上应用胶囊网络可以提高手写数字识别的准确性。
以下是使用Keras库(Python)构建一个简单的胶囊网络分类MNIST数据集的示例代码:
```python
# 导入所需库
from keras import layers, models, backend
from keras.datasets import mnist
from keras.layers import Input, Lambda
import numpy as np
# 定义Squash函数(胶囊网络的核心部分)
def squash(x, axis=-1):
s_squared_norm = backend.sum(backend.square(x), axis=axis)
scale = 1 / (1 + s_squared_norm)
return scale * x
# 构建胶囊层
def caps_layer-routing(num_capsules, num_route_nodes, in_dim, out_dim):
def layer(x):
capsules = []
for i in range(num_capsules):
c = layers.Dense(num_route_nodes, kernel_initializer='glorot_uniform')(x)
b = layers.Lambda(lambda z: z[:, None])(np.zeros((num_route_nodes, out_dim))) # route bias
c = layers.Softmax(axis=1)(c) # 软max路由
capsules.append(layers.Multiply()([c, b]))
capsules = layers.Concatenate(axis=1)(capsules)
output = layers.Reshape((num_capsules, out_dim))(capsules)
return squash(output)
return layer
# 准备数据
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train.reshape(-1, 28, 28, 1).astype('float32') / 255., x_test.reshape(-1, 28, 28, 1).astype('float32') / 255.
# 将输入扁平化,以便适应胶囊网络
input_shape = (None, 28, 28, 1)
inputs = layers.Input(shape=input_shape)
# 创建第一个胶囊层
primary_caps = caps_layer-routing(256, 16, 28 * 28, 8)(inputs)
# 输出层
digit_caps = caps_layer-routing(10, 16, 8, 16)(primary_caps)
# 定义损失函数(动态路由的Margin Loss)
def margin_loss(y_true, y_pred):
L = y_true * backend.square(kron(y_pred, y_pred) - y_pred) \
+ 0.5 * (1 - y_true) * (backend.square(kron(1 - y_pred, 1 - y_pred) - (1 - y_pred)))
return backend.mean(L, axis=[1,2])
# 计算准确率
def accuracy(y_true, y_pred):
batch_size = tf.shape(y_true)[0]
pred_digits = tf.argmax(y_pred, axis=1)
true_labels = tf.argmax(y_true, axis=1)
correct = tf.cast(tf.equal(pred_digits, true_labels), tf.float32)
return backend.mean(correct)
# 模型编译
margin_loss_value = layers.Lambda(margin_loss)
accuracy_value = layers.Lambda(accuracy)
capsule_model = models.Model(inputs=inputs, outputs=[margin_loss_value, accuracy_value])
capsule_model.compile(optimizer='adam', loss=[lambda y_true, y_pred: 0., 'accuracy'])
# 训练模型
capsule_model.fit(x_train, [y_train, y_train],
epochs=5,
validation_data=(x_test, [y_test, y_test]))
阅读全文