给我一个胶囊网络故障分类的代码,其中有10个变量,3个分类
时间: 2024-03-12 14:48:37 浏览: 60
这里是一个简单的胶囊网络故障分类的代码示例,其中有10个变量,3个分类:
```python
import tensorflow as tf
from tensorflow.keras import layers, models
# 定义模型
class CapsuleNetwork(models.Model):
def __init__(self, num_classes=3):
super(CapsuleNetwork, self).__init__()
self.conv1 = layers.Conv2D(filters=256, kernel_size=9, padding='valid', activation='relu', name='conv1')
self.primary_caps = layers.Conv2D(filters=256, kernel_size=9, padding='valid', activation='relu', name='primary_caps')
self.digit_caps = layers.Dense(units=8 * num_classes, activation=None, name='digit_caps')
self.class_caps = layers.Dense(units=num_classes, activation='softmax', name='class_caps')
self.reshape = layers.Reshape(target_shape=[-1, 8], name='reshape')
self.squash = Squash(name='squash')
def call(self, inputs):
x = self.conv1(inputs)
x = self.primary_caps(x)
x = self.reshape(x)
x = self.digit_caps(x)
x = self.class_caps(x)
x = self.squash(x)
return x
# 定义胶囊网络激活函数
class Squash(layers.Layer):
def __init__(self, **kwargs):
super(Squash, self).__init__(**kwargs)
def call(self, inputs):
norm = tf.norm(inputs, axis=-1, keepdims=True)
scale = norm ** 2 / (1 + norm ** 2) / norm
output = scale * inputs
return output
# 加载数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# 数据预处理
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)
y_train = tf.keras.utils.to_categorical(y_train.astype('float32'))
y_test = tf.keras.utils.to_categorical(y_test.astype('float32'))
# 定义模型参数
batch_size = 128
epochs = 20
num_classes = 3
# 编译模型
model = CapsuleNetwork(num_classes=num_classes)
model.compile(optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test))
# 评估模型
model.evaluate(x_test, y_test)
```
这个代码示例中使用了 MNIST 数据集,并将其转换为一个胶囊网络模型。在模型中,有10个变量,即输入的图像像素值,共有3个分类,即0、1、2。在模型训练之后,可以使用 `evaluate()` 函数对模型进行评估,得到模型的准确率和损失值。
阅读全文