给我一个胶囊网络故障分类的代码,其中有8个变量,3个分类
时间: 2024-03-12 18:47:51 浏览: 55
Capsule-master_恶意代码_双向LSTM+胶囊网络+注意力机制_文本分类_恶意代码API序列分类_
5星 · 资源好评率100%
好的,以下是一个使用胶囊网络进行故障分类的Python代码,其中包含8个输入变量和3个输出分类:
```python
import tensorflow as tf
from keras import layers, models
from keras import backend as K
# 定义胶囊层
class Capsule(layers.Layer):
def __init__(self, num_capsule, dim_capsule, routings=3, kernel_size=(9, 1), share_weights=True, activation='default', **kwargs):
super(Capsule, self).__init__(**kwargs)
self.num_capsule = num_capsule
self.dim_capsule = dim_capsule
self.routings = routings
self.kernel_size = kernel_size
self.share_weights = share_weights
if activation == 'default':
self.activation = self.squash
else:
self.activation = layers.Activation(activation)
def build(self, input_shape):
super(Capsule, self).build(input_shape)
input_dim_capsule = input_shape[-1]
if self.share_weights:
self.kernel = self.add_weight(name='capsule_kernel', shape=(1, self.kernel_size[0], input_dim_capsule, self.num_capsule*self.dim_capsule), initializer='glorot_uniform', trainable=True)
else:
self.kernel = [self.add_weight(name='capsule_kernel_'+str(i), shape=(1, self.kernel_size[0], input_dim_capsule, self.dim_capsule), initializer='glorot_uniform', trainable=True) for i in range(self.num_capsule)]
def call(self, inputs):
if self.share_weights:
u_hat_vecs = K.conv2d(inputs, self.kernel, strides=(1, 1), padding='valid')
else:
u_hat_vecs = [K.conv2d(inputs, self.kernel[i], strides=(1, 1), padding='valid') for i in range(self.num_capsule)]
batch_size = K.shape(inputs)[0]
input_num_capsule = K.shape(inputs)[1]
u_hat_vecs = K.reshape(u_hat_vecs, (batch_size, input_num_capsule, self.num_capsule*self.dim_capsule))
u_hat_vecs = K.permute_dimensions(u_hat_vecs, (0, 2, 1))
b = K.zeros_like(u_hat_vecs[:, :, 0])
for i in range(self.routings):
c = K.softmax(b, axis=1)
outputs = self.activation(K.batch_dot(c, u_hat_vecs, [2, 2]))
if i < self.routings - 1:
b += K.batch_dot(outputs, u_hat_vecs, [2, 1])
return outputs
def compute_output_shape(self, input_shape):
return (None, self.num_capsule, self.dim_capsule)
def squash(self, x, axis=-1):
s_squared_norm = K.sum(K.square(x), axis, keepdims=True)
scale = K.sqrt(s_squared_norm + K.epsilon())
return x / scale
# 定义模型
input_shape = (8, 1)
x = layers.Input(shape=input_shape)
conv1 = layers.Conv1D(filters=64, kernel_size=3, strides=1, padding='valid', activation='relu')(x)
caps1 = Capsule(num_capsule=8, dim_capsule=16, routings=3, share_weights=True)(conv1)
flat1 = layers.Flatten()(caps1)
output = layers.Dense(3, activation='softmax')(flat1)
model = models.Model(inputs=x, outputs=output)
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 加载数据
train_x = ...
train_y = ...
# 训练模型
model.fit(train_x, train_y, epochs=10, batch_size=32)
```
在上面的代码中,我们使用了Keras框架,使用了一个包含了一个卷积层和一个胶囊层的神经网络。其中,输入变量为8个,输出分类为3个。您需要将`train_x`和`train_y`替换为您自己的数据集。
阅读全文