写一段用于故障诊断的一维胶囊网络代码keras
时间: 2023-07-28 17:10:48 浏览: 67
好的,以下是一段用于故障诊断的一维胶囊网络代码keras:
```python
from keras import layers, models
class CapsNet(models.Model):
def __init__(self, input_shape, n_class, routings):
super(CapsNet, self).__init__()
self.input_shape = input_shape
self.n_class = n_class
self.routings = routings
# Layer 1: Just a conventional Conv1D layer
self.conv1 = layers.Conv1D(filters=256, kernel_size=9, strides=1, padding='valid', activation='relu', name='conv1')
# Layer 2: Conv1D layer with `squash` activation, then reshape to [None, num_capsule, dim_capsule]
self.primarycaps = layers.Conv1D(filters=256, kernel_size=9, strides=2, padding='valid', name='primarycaps')
self.activation = layers.Lambda(squash, name='activation')
# Layer 3: Capsule layer. Routing algorithm works here.
self.digitcaps = layers.CapsuleLayer(num_capsule=n_class, dim_capsule=16, routings=routings,
name='digitcaps')
# Layer 4: This is an auxiliary layer to replace each capsule with its length. Just to match the true label's shape.
self.out_caps = layers.Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)), name='out_caps')
def call(self, inputs, training=None):
# Inputs
x = self.conv1(inputs)
x = self.primarycaps(x)
x = self.activation(x)
# Digit Capsule
x = self.digitcaps(x)
# Output
out_caps = self.out_caps(x)
return out_caps
def model(self):
x = layers.Input(shape=self.input_shape)
return models.Model(inputs=[x], outputs=self.call(x))
# Squash activation function
def squash(vectors, axis=-1):
s_squared_norm = K.sum(K.square(vectors), axis, keepdims=True)
scale = s_squared_norm / (1 + s_squared_norm) / K.sqrt(s_squared_norm + K.epsilon())
return scale * vectors
```
以上代码实现了一个包含卷积层、胶囊层和长度层的一维胶囊网络。你可以根据自己的数据和实际情况调整模型的参数。
阅读全文